Supernova Burst and Relic Neutrinos John Beacom, The Ohio State University

The Ohio State University's Center for Cosmology and AstroParticle Physics

Plan of the Talk

Introduction to Supernova Neutrinos

Focus on Burst Detection

What will we know after the next burst? What new capabilities do we need? What are my recommendations for Jinping?

Focus on Relic Detection

What do we know now? What new capabilities do we need? What are my recommendations for Jinping?

Concluding Remarks

Introduction to Supernova Neutrinos

SN 1987A: Our Rosetta Stone

Core-Collapse Supernova Basics

Type la (thermonuclear, few neutrinos)

Type II (core collapse, many neutrinos)

Neutrinos carry away the change in gravitational potential energy Δ (P.E.) ~ (-GM²/R)_{neutron-star} - (-GM²/R)_{stellar-core} ~ -3x10⁵³ erg approximately shared among all six flavors

Neutrinos are trapped by scattering interactions and diffuse out quasi-thermal with <E> \sim 15 MeV

 $\tau \sim \text{few seconds}$

John Beacom, The Ohio State University

Jinping Neutrino Workshop, Tsinghua University, June 2015

Importance of Supernova Neutrino Detection

John Beacom, The Ohio State University

Jinping Neutrino Workshop, Tsinghua University, June 2015

Distance Scales and Detection Strategies

Importance of the Spectrum

Focus on Burst Detection

Simple Estimate: Milky Way Burst Yields

Super-Kamiokande (32 kton water)

- $\sim 10^4$ inverse beta decay on free protons
- $\sim 10^2$ CC and NC with oxygen nuclei
- ~ 10² neutrino-electron elastic scattering (crude directionality)

KamLAND, MiniBooNE, Borexino, SNO+, etc (~ 1 kton oil)

- $\sim 10^2$ inverse beta decay on free protons
- ~ 10² neutron-proton elastic scattering
- ~ 10 CC and NC with carbon nuclei
- ~ 10 neutrino-electron elastic scattering

IceCube (10⁶ kton water)

Burst is significant increase over background rate Possibility of precise timing information

Much larger or better detectors are being proposed now

Key Problem: Incomplete Flavor Coverage

Need all flavors to measure the total emitted energy Comparable total energies expected

And need all flavors to test effects of neutrino mixing Temperature hierarchy expected

 ν_e Inadequate (~ 10² events in Super-K)

 $u_{\mu},
u_{ au}, ar{
u}_{\mu}, ar{
u}_{ au}$ Inadequate (~ 10² events in oil)

Need better detectors for the ν_{e} and ν_{x} flavors

John Beacom, The Ohio State University

Jinping Neutrino Workshop, Tsinghua University, June 2015

Isolating v_e (in oil)

Must measure final-state energy to get neutrino spectrum Use electrons (low energies) and carbon (high energies)

Competition: ~ 1-kton-scale detectors Borexino, KamLAND, SNO+ ~ 10-kton-scale detectors Super-K (+Gd), JUNO, DUNE

John Beacom, The Ohio State University

Isolating v_e (in water)

Must measure final-state energy to get neutrino spectrum Use electrons (low energies) and oxygen (high energies)

Competition: ~ 1-kton-scale detectors Borexino, KamLAND, SNO+ ~ 10-kton-scale detectors Super-K (+Gd), JUNO, DUNE

John Beacom, The Ohio State University

Isolating v_x (in oil)

Must measure final-state energy to get neutrino spectrum Only good option is free protons

KamLAND estimates (Dasgupta and Beacom 2011)

Competition: \sim 1-kton-scale detectors Borexino, KamLAND, SNO+ \sim 10-kton-scale detector JUNO

John Beacom, The Ohio State University

Jinping Neutrino Workshop, Tsinghua University, June 2015

Burst: Recommendations for Jinping Detector

SN Burst is secondary goal due to SN rate, competition But Jinping could make an important contribution

LS or WbLS is favored to improve measurement of v_e and v_x These are the hardest flavors to detect and isolate

Focus on neutron efficiency, quenching, directionality (?) Backgrounds, energy resolution, uptime, trigger all "easy"

Could promptly identify a supernova with own data Use "heartbeat" signal [Beacom and Vagins; Adams et al.]

Focus on Relic Detection

Simple Estimate: DSNB Event Rate

DSNB event rate in Super-Kamiokande is a few per year

Theoretical Framework

Signal rate spectrum in detector in terms of measured energy

$$\frac{dN_e}{dE_e}(E_e) = N_p \,\sigma(E_\nu) \,\int_0^\infty \left[(1+z) \,\varphi[E_\nu(1+z)] \right] \left[R_{SN}(z) \right] \left[\left| \frac{c \, dt}{dz} \right| dz \right]$$

Third ingredient: Detector Capabilities (well understood)

Second ingredient: Core-collapse rate (formerly very uncertain, but now known with good precision)

First ingredient: Neutrino spectrum (this is now the unknown)

Cosmology? Solved. Oscillations? Included. Backgrounds? See below.

John Beacom, The Ohio State University

Jinping Neutrino Workshop, Tsinghua University, June 2015

Predicted Flux and Event Rate Spectra

Horiuchi, Beacom, Dwek (2009)

Bands show full uncertainty range arising from cosmic supernova rate

John Beacom, The Ohio State University

Jinping Neutrino Workshop, Tsinghua University, June 2015

Key Problem: Large Detector Backgrounds

Malek et al. [Super-Kamiokande] (2003); energy units changed in Beacom (2011) – use with care

> See updated search and results in Bays et al. [Super-Kamiokande] (2012)

Amazing background rejection: nothing but neutrinos despite huge ambient backgrounds

Amazing sensitivity: factor ~100 over Kamiokande-II limit and first in realistic DSNB range

No terrible surprises

Challenges: *Decrease* backgrounds and energy threshold and *increase* efficiency and particle ID

Jinping Neutrino Workshop, Tsinghua University, June 2015

John Beacom, The Ohio State University

Benefits of Neutron Tagging for DSNB

Solar neutrinos: eliminated

- Spallation daughter decays: essentially eliminated
- Reactor neutrinos: now a visible signal
- Atmospheric neutrinos: significantly reduced

DSNB: *More signal, less background!*

Beacom, Vagins (2004)

(DSNB predictions now at upper edge of band)

John Beacom, The Ohio State University

Jinping Neutrino Workshop, Tsinghua University, June 2015

Relics: Recommendations for Jinping Detector

Supernova relics is secondary goal due to low signal rate But Jinping could make an important contribution

LS or WbLS is favored to reduce CC backgrounds (Super-K) High neutron efficiency, high light yield are essential

Need to focus on reducing NC backgrounds (KamLAND) Better detector, new analysis techniques could be decisive

Might be able to identify signal with ~ 1 event / few years Depends on convincing case for near-zero backgrounds

Concluding Remarks

Why Do We Need Multiple Detectors?

Different uptime --- don't miss the supernova

Different capabilities --- more complete measurements

Different challenges --- reduce uncertainties

Different detectors --- increase statistics

Different positions --- measure Earth effect on mixing

We probably only get one supernova!

John Beacom, The Ohio State University

All-Sky Optical Monitoring to Leverage

Connection to astronomy crucial, but optical data are lacking Enter OSU's "Assassin" (All-Sky Automated Survey for SN)

Discovering and monitoring optical transients to 17th mag. See also Adams, Kochanek, Beacom, Vagins, Stanek (2013)

John Beacom, The Ohio State University

Overall Recommendations for Jinping Detector

Choose technology on the basis of primary science goals Likely solar and geo- neutrinos, possibly WbLS demo

Decide how to compete with similar detectors Size, low-energy response, detector backgrounds

Make case that multiple detectors are needed Reduce systematics, increase statistics, test Earth effect

Consider ways to leverge investments Co-operate with ASAS-SN on prompt SN detection

Center for Cosmology and AstroParticle Physics

The Ohio State University's Center for Cosmology and AstroParticle Physics

Columbus, Ohio: 1 million people (city), 2 million people (city+metro) Ohio State University: 56,000 students Physics: 55 faculty, Astronomy: 20 faculty CCAPP: 20 faculty, 10 postdocs from both departments Placements: In 2014 alone, 12 CCAPP alumni got permanent-track jobs

ccapp.osu.edu

Recent faculty hires: Linda Carpenter, Chris Hirata, Annika Peter Incoming faculty hires: Adam Leroy, Laura Lopez Recent PD hires: M. Bustamante, A. Nierenberg, A. Ross, A. Zolotov Incoming PD hires: K. Auchettl, J. Hanson, T. Linden CCAPP Postdoctoral Fellowship applications welcomed in Fall