

Study Solar Neutrinos at Jinping

Zhe Wang Tsinghua University Jun. 5, 2015 at Jinping neutrino workshop

- Current solar neutrino study situation
- Sensitivity of Jinping for solar neutrino physics
 - 1. Simulation study
 - 2. Precision of each solar component Discovery of CNO, precise measurement of others
 - 3. Matter-vacuum transition
 - 4. Day-night asymmetry
 - 5. Metallicity problem
- Outlook with WbLS
- Compare with other detectors
- **Summary**

Current solar neutrino study situation

Standard input from J. Bahcall

Asymmetry between v_e and $v_{\mu\tau}$ Oscillation probability density dependent

Current best solar measurements

Low energy (<3 MeV)
 From Borexino and
 chemical experiments

 High energy (>3 MeV)
 From Super Kaminokande and SNO

1. Constrain on new physics is loose

Sterile neutrino, NSI, etc.

Questions for solar neutrino physics

✓ Solar Model

- 1. CNO neutrino not discovered (High temperature stars)
- 2. Metallicity problem
- 3. hep neutrino not discovered
- 4. pp neutrino precision
- ✓ MSW effect
 - **1.** Oscillation transition from matter to vacuum
 - 2. Constrain on new physics
 - 3. Matter effect on the Earth

Main issue of Borexino

Bx Be7 measurement

Cosmic genic C10 and C11 are the main background. External gamma is also a problem.

Sensitivity of Jinping for solar neutrino physics

Neutrino flux on the Earth

Standard input from J. Bahcall

Focus on neutrino-electron scattering

Not useful for current study

	E_{Max} or E_{Line}	Flux (GS98) high metallicity	Flux (AGS09) low metallicity
	[MeV]	$[\times 10^{10} s^{-1} cm^{-2}]$	$[\times 10^{10} s^{-1} cm^{-2}]$
$\mathbf{p}\mathbf{p}$	$0.42 { m MeV}$	$5.98(1 \pm 0.006)$	$6.03(1 \pm 0.006)$
^{7}Be	$0.38 { m MeV}$	$0.053(1 \pm 0.07)$	$0.048(1 \pm 0.07)$
	$0.86 { m MeV}$	$0.447(1 \pm 0.07)$	$0.408(1 \pm 0.07)$
pep	$1.45 { m MeV}$	$0.0144(1 \pm 0.012)$	$0.0147(1 \pm 0.012)$
^{13}N	$1.19 { m MeV}$	$0.0296(1 \pm 0.14)$	$0.0217(1 \pm 0.14)$
^{15}O	$1.73 { m MeV}$	$0.0223(1 \pm 0.15)$	$0.0156(1 \pm 0.15)$
^{17}F	$1.74 { m MeV}$	$5.52 \times 10^{-4} (1 \pm 0.17)$	$3.40 \times 10^{-4} (1 \pm 0.17)$
^{8}B	$15.8 { m MeV}$	$5.58 \times 10^{-4} (1 \pm 0.14)$	$4.59 \times 10^{-4} (1 \pm 0.14)$
hep	$18.5 { m MeV}$	$8.04 \times 10^{-7} (1 \pm 0.30)$	$8.31 \times 10^{-7} (1 \pm 0.30)$

Astrophys. J. 743, 24 (2011); Astrophys. J. Lett. 705, L123 (2009).

Oscillation probability

$$P_{ee}^{\odot} = \cos^{4} \theta_{13} \left(\frac{1}{2} + \frac{1}{2} \cos 2\theta_{12}^{M} \cos 2\theta_{12}\right)$$

Solar v_e survival Probability

$$\cos 2\theta_{12}^{M} = \frac{\cos 2\theta_{12} - \beta}{\sqrt{(\cos 2\theta_{12} - \beta)^2 + \sin^2 2\theta_{12}}} \qquad \qquad \text{Electron} \\ \text{density} \\ \beta = \frac{2\sqrt{2}G_F \cos^2 \theta_{13} n_e E_{\nu}}{\Delta m_{12}^2},$$

Adiabatic assumption

The matter-vacuum transition

With cross-section and oscillation considered.

Upturn in electron kinetic energy

Backgrounds

Internal

- 1. Kr85, Bi210, C14, Tl208
- 2. Same level as Borexino
- External
 - 1. Tl208
 - 2. Same level as Borexino
- Cosmo-genic
 - 1. C11, C10, Be11
 - 2. divided by 200

Background spectra

- Expect a detector larger than SNO
- 1 kton tried first

1 kton is fiducial mass. It needs a buffer of ~4 m on each side.

Resolution	Material
200 PE/MeV	Water-like
500 PE/MeV	WbLS-like
1000 PE/MeV	High light yield LS

After resolution smearing

- 1. First step: precise flux measurement. Need a precise target mass value.
- Fiducial target mass: Depend on vertex calibration precision. Assume 1%. (1 cm bias on 3 meter is not significant)
- Non-linear energy response. Assume 1% based on Daya Bay experience
- 4. Total 1.5%

Discover CNO, improve all precisions

Relative error		Statistical		Systematic
	$200 \ \mathrm{PE/MeV}$	$500 \ \mathrm{PE/MeV}$	1000 PE/MeV	7
pp	0.02	0.008	0.006	0.015
$^{7}\text{Be} (0.86 \text{ MeV})$	0.008	0.006	0.006	0.015
pep	0.06	0.04	0.04	0.015
^{13}N	NA (NA)	0.5 (NA)	0.2(0.4)	0.015
$^{15}\mathrm{O}$	0.3(0.4)	0.2(0.3)	0.1(0.2)	0.015
⁸ B	0.02	0.02	0.02	0.015

- 1. pp window is narrow. Need good resolution. Expect stat. unc. <1%
- 2. Be7, pep stat. unc. <1%. Insensitive to resolution
- 3. To discover CNO, need good resolution to differentiate all shapes
- 4. B8 is limited to target mass

Upturn

Metallicity

- With good stat. error of Be7, pep, and B8
- Dominated by systematic

- When solar neutrinos go though the Earth, v_e is regenerated.
- Theoretical day-night asymmetry mainly for is <3%</p>
- But Jinping B8 flux precision is only 2%
- Target mass limits the precision.

- Improvement on solar mixing angle
- Rejection or discovery power for new physics

In progress...

Outlook with WbLS

- Cherenkov and scintillation separation
 - Gamma and electron separation External gamma background Internal C10, C11, Tl208 involve gammas

0.0025

- 2. Electron direction reconstruction Correlation with solar angle
- Further improve S/N by 2 or more

Compare with other detectors

Super Kaminokande and Hyper Kaminokande

The huge target mass =>

* precise B8 flux measurement

day-night asymmetry

Upturn around 3 MeV

JUNO

- > 20 kton (Assume low bkg rate as Borexino)
- Good statistical sensitivities of Be7 and B8: $\sigma_{stat} << 1\%$
 - 1. Similar or much better than Jinping 1 kton
- Key is systematic for a useful flux measurement: $\sigma_{syst} < 1\%$ which requires
 - 1. Energy response nonlinearity
 - 2. Position reconstruction precision and calibration

Be7 and B8 precision is hindered by systematic, to have large target mass is not the 1st priority.

Large LAr TPC

- LBNE/DUNE 30 kton
- Large target mass and tracking capability
- Shortcoming:
 - 1. High energy threshold >10 MeV
 - 2. Overburden
- So far B8 neutrinos only

44

Recommendations for Jinping

- Liquid scintillator or WbLS
- Large detector is not urgent

5/2015

- 1. Kilo-ton : Easy to handle (purification and calibration)
- Fine calibration: nonlinearity and position

	mass	Material	Threshold	Be7	B8	Other compone nts	Need
Jinping	1 kton	LS or WbLS	~200 keV	s _{stat} <<1%	s _{stat} ~2%	Y	Calib.
JUNO	20 kton	LS	~200 keV	s _{stat} <<1%	$s_{stat} << 1\%$	Ν	Calib
SuperK (Hyper K)	> 50 kton	water	~3 MeV	-	s _{stat} <<1%	N	Calib
LBNE/ DUNE	> 30 kton	LAr TPC	~10 MeV	-	s _{stat} <<1%	N	Calib

- 1. Jinping is ideal for solar neutrino physics study
- 2. Kilo-ton scale detector will work!
- 3. LS or WbLS for the best
- 4. In physics:
 - 1. Discover CNO neutrino
 - 2. Precision measurement of other components
 - 3. Conclusive constraint of matter-vacuum transition
 - 4. Resolve metallicity puzzle (relying systematic)
 - 5. Weak in attacking day-night asymmetry
 - 6. Improvement on mixing angles and constraint on new physics will be studied

Thank you!

e-, gamma, e+ comparison

