

Supernova Burst Neutrinos at Jinping

Hanyu WEI Tsinghua University 2015 Workshop of Jinping Neutrino Program June 5, 2015

Outline

Introduction

Supernova Burst Neutrinos (SNv)

- Energy & Timing spectra
- Identification and expected number of SN ν

Online Searching for Supernova Neutrino Burst

- IBD signature and selection efficiency
- Trigger strategy
- Implementation (Daya Bay as an example)
- Pointing capability
- Detection probability
- Discussion & Summary

Introduction I

- SNv is important in studying supernova dynamics
 - ▶ ~99% of the stellar collapse gravitational binding energy
 - Arrive a few hours before optical SN explosion (Early Warning)
 - SN explosion rate ~0.01/year in kpc ~1/year in Mpc
- Neutrino physics
 - Oscillation
 - Mass hierarchy
 - Matter effect
- Contribute to astrophysics and cosmology
- Joint analysis with gravitational wave experiment

Introduction II

Jinping 🙂

- Low cosmogenic backgrounds
- Low reactor $\bar{\nu}_e$ neutrinos
- Possible multiple detectors
- Water-based liquid scintillator (WbLS)

Sensitive to Supernova Burst Neutrinos

- Online trigger (early warning, join SNEWS ?)
- Offline analysis

Supernova Burst Neutrinos

1987A-type in this slides: Eav ~12 MeV luminosity ~3×10⁵³ erg (1/6 in the form of $\bar{\nu}_e$)

. . .

Energy and Timing Spectra

2015 Workshop of Jinping Neutrino Program

Identification and expected number of $SN\nu$

SNv identified primarily through IBD interactions in liquid scintillator
10³ – Annu, Rev. Nucl. Part. Sci. 2012, 62:81–103

- Ikt WbLS. ~300 SN ν events through IBD at 10 kpc
 - $N \propto L(luminosity)/D(distance)^2$, N should be corrected with selection efficiency and muon veto efficiency, etc for realistic calculation

Experiments in SNEWS

SNEWS (Supernova Early Warning System)

• Collaborate worldwide experiments sensitive to $SN\nu$, to provide the astronomical community with a very high-confidence early warning

Detector	Туре	Location	Mass (kt)	N _{IBD}	$E_{\rm th}~({\rm MeV})$
IceCube	*L.S. Ch.	Antarctic	0.6/PMT	N/A	-
Super-K	Water Ch.	Japan	32	7000	7.0 Pointing
LVD	Scint.	Italy	1	300	4.0
KamLAND	Scint.	Japan	1	300	0.35
Borexino	Scint.	Italy	0.3	100	0.2
Daya Bay	†M.S. Scint.	China	0.33	110	0.7

* Long-String Cherenkov † Multiple-Site Scintillator

What about Jinping (Wb)LS?

Pointing capability:

- ✓ Result from the Cherenkov light of electron of neutrino-electron scattering
- $\checkmark\,$ Pointing powerful telescopes or facilities to the SN event

Online Searching for Supernova Neutrino Bursts

Search for any IBD signal increase in a single or multiple detectors within sliding 10-second windows

Three 'P's:

- Positive
- Prompt
- Pointing

IBD signature and selection efficiency

- $\bar{\nu}_e + p \rightarrow e^+ + n$
 - Prompt signal: positron kinetic energy (scintillation plus a few percent Cherenkov) and annihilation (2×0.511 -MeV γ 's)
 - Delayed signal: $n + H \rightarrow D + \gamma$ (2.2 MeV, ~200us)
- Efficiency (~50%) based on Daya Bay nH study:
 - Prompt energy cut (10-50 MeV): 88%
 - Delayed energy cut (peak in 3σ): 67.4% (conservative)
 - Time-coincidence cut (400 us): 84.6%
 - Vertex distance cut (1000 mm): ~98%

Trigger Strategy (1 or 2 1.5kt detector)

- Low background rate (1.5 kt (Wb-) liquid scint.)
 - I0-50MeV: <1/yr (refer to SRN background estimation)</p>
 - I0-second window: ~ZERO
- For one single detector, trigger: ≥ 2 IBD signals in 10s
- For two detectors, trigger: ≥ 2 IBD signals in total in 10s
 - Non-trigger: (0,0), (0,1), (1,0)
 - Uniformity check (a χ^2 cut) assuming SN ν uniformly distributed in detectors to suppress non-astrophysical bursts (e.g. electronic noise)

Note:

I.The background coincidence rate surviving the trigger strategy can be calculated precisely2.The trigger strategy can be tuned due to a background coincidence rate threshold3.The correlation between two detectors can be well handled

Positive

Implementation (Daya Bay arXiv.1505.02501)

- Embedded in the existing DAQ
- Software-based trigger system (information sharing, DIM communication, etc.)
- Basic on-site computation sources

Pointing capability

Water-based liquid scint. (3 kt)

- Cherenkov light
- Neutrino-electron scattering → pointing capability (only SK now)
- With ~40% total PMT coverage, the angular resolution for a 1987A-type supernova burst at Milky Way center is ~4°.
 - Larger target mass/PMT coverage will improve the angular resolution by larger stats.
 - Size of single PMT should not be too large which geometrically determines the lower bound of angular resolution.

Detection probability

Sum the probabilities of the triggers surviving the trigger strategy

▶ The 2nd best across the world (SuperK: 100% to 100 kpc)

Benefit mainly from quite low background rate

Discussion

- Optimize IBD selection (efficiency) to achieve better detection prob.
 - A larger selection efficiency (~80% even more)
- Small target mass: 2×1.5 kt = 3.0 kt (SuperK: 22.5 kt)
- Low energy threshold < IMeV (Wb-)LS</p>
 - Sensitive to full SN ν spectrum
 - Various models
 - Red shift (large impact on Mpc distance SN bursts), Eav may change from 12 to 6 MeV
- Multiple small detectors
 - Due to deep rock cover
 - Robust against backgrounds (benefit trigger strategy)

Discussion (Cont'd)

- Offline analysis prospect
 - live time ?
 - quite low background
 - Inspiring detection probability
 - Iow energy threshold
 - Identify different flavors of SN ν from other channels (~10%)
 - WbLS particle identification

Summary

- Jinping is a competitive laboratory to set up online supernova trigger based on (Wb-)liquid scintillator.
 - Positive and Prompt and Pointing
 - Only one to satisfy the three 'P's ?
- Only a few kt (Wb-)LS can reach the best detection probability of supernova neutrino bursts.
- Most likely to have one of the lowest energy threshold for supernova burst neutrino detection and an excellent v-flavor identification ?