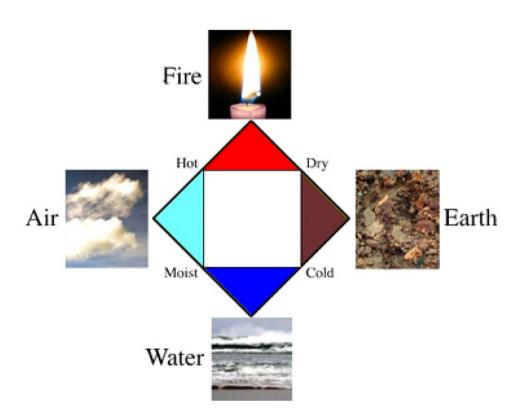
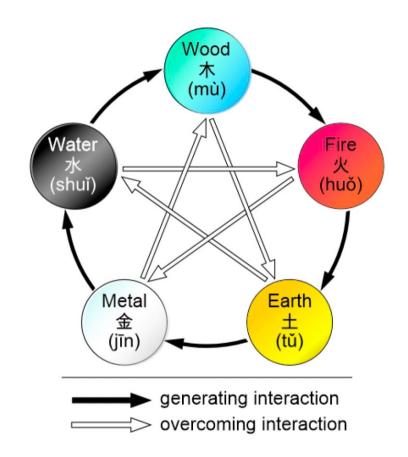
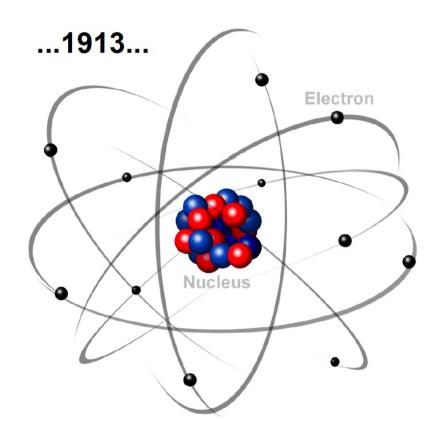


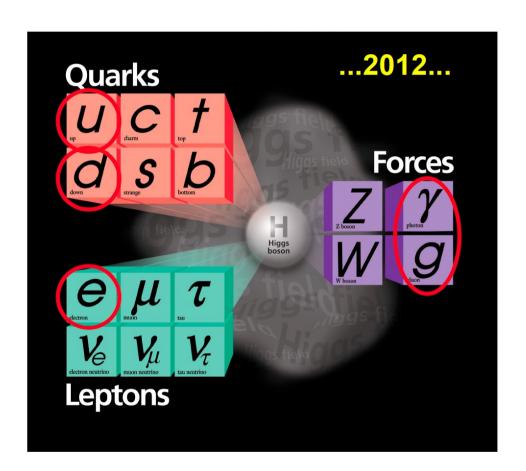
High Energy Collider: Science & Status

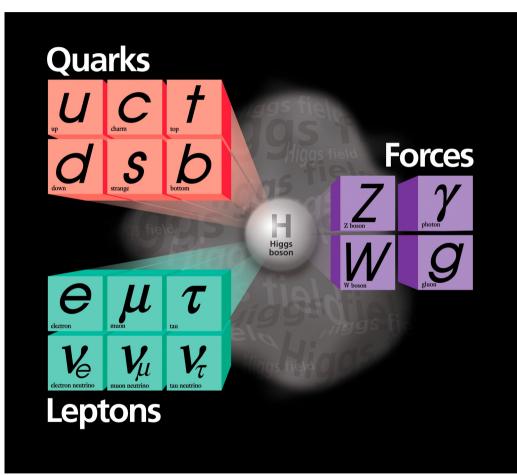



Manqi RUAN(IHEP, Beijing)

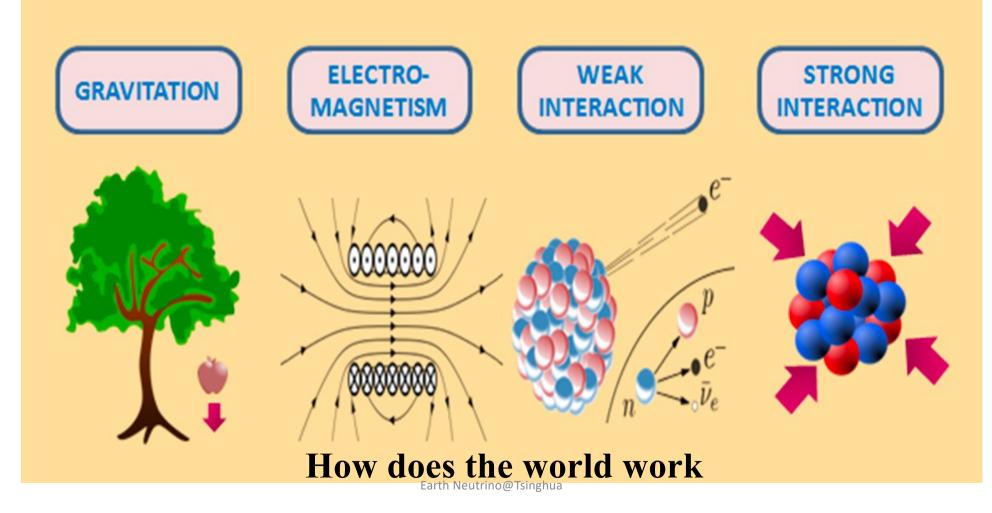
What's the world made of?


How does the world work?

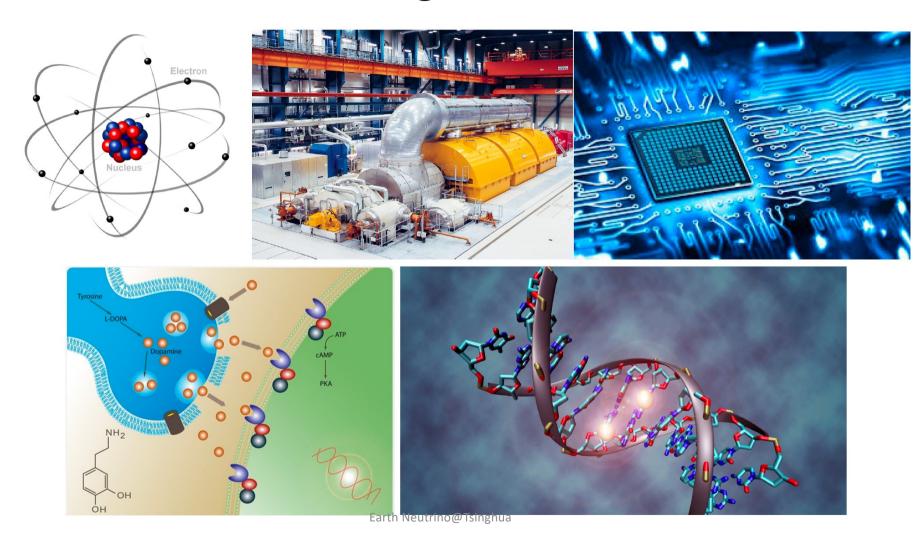

~3000 years ago



...20th to 21st century

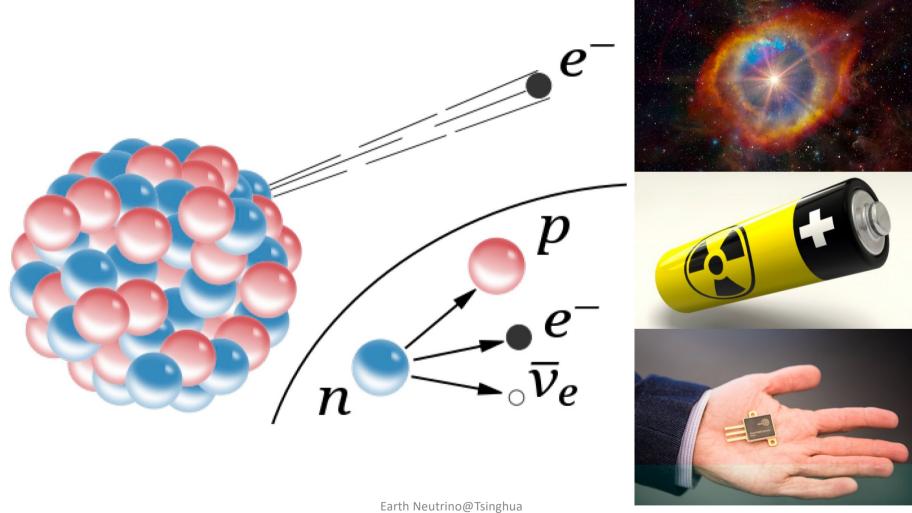


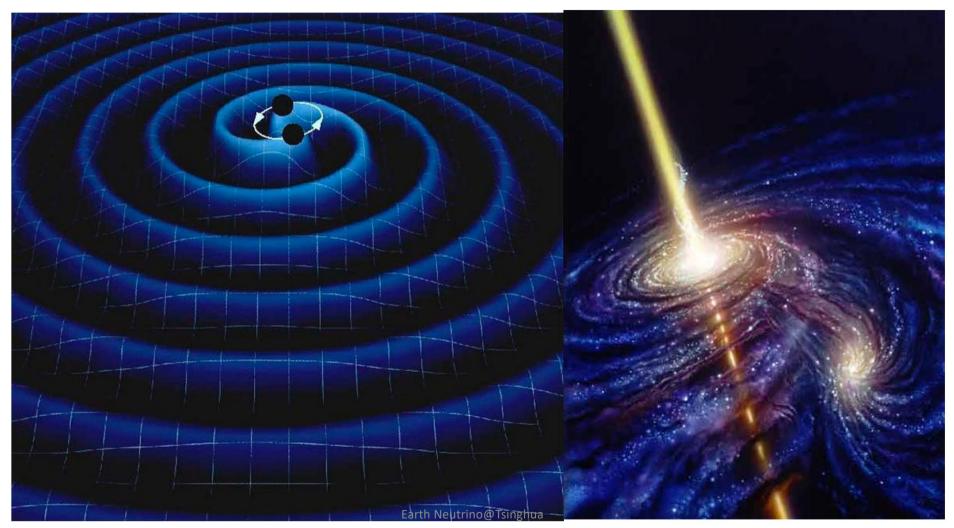
The SM of particle physics: predicts lots of new particles, and found them in the experiments

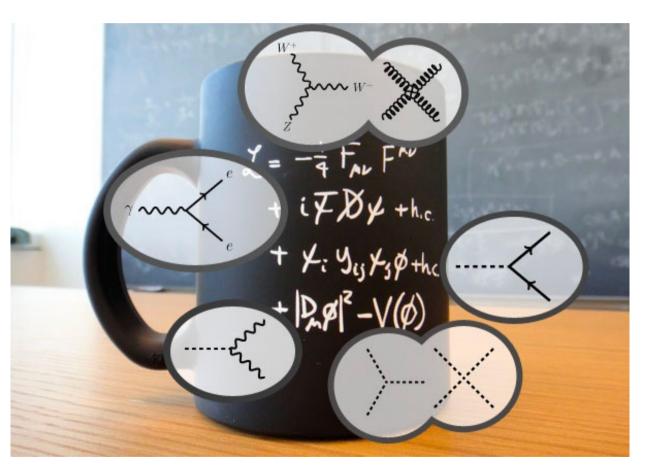


- Discoveries (Nobel Price in Physics)
 - 2015, 2013
 - 2002
 - 1995, 1990
 - 1988, 1984, 1980
 - 1976
 - 1969
 - 1959, 1951, 1950
- Instrumentations
 - 1992
 - 1968, 1960
 - 1958
 - 1948

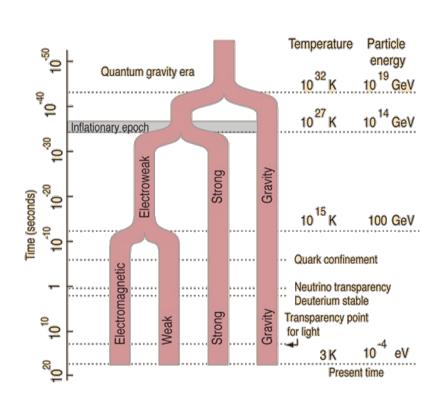
FOUR FUNDAMENTAL FORCES

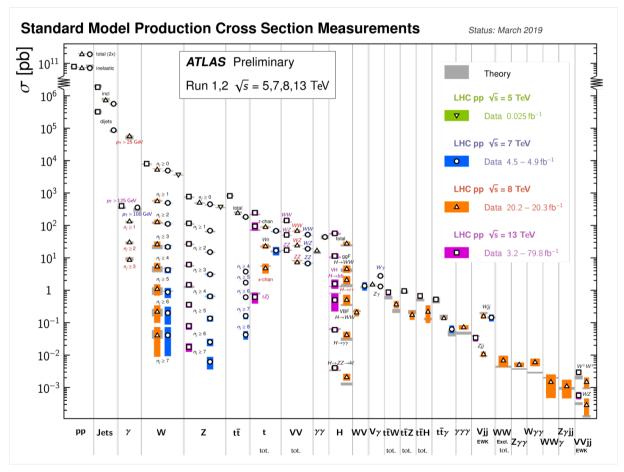

The electromagnetic interaction


The strong interaction


The weak interaction

The gravitational interaction




The SM of particle physics: unifies the strong, the weak, and the electromagnetic interactions

- Relevant Nobel prices (theoretical)
 - 2008
 - 2004
 - 1999
 - 1979
 - 1965
 - 1957
 - 1949

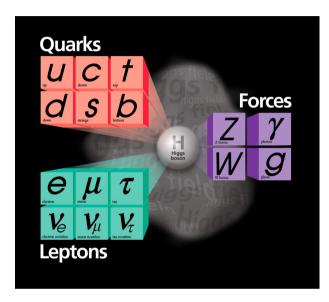

The SM: predicts and interprets almost all the experimental data at accelerator experiments

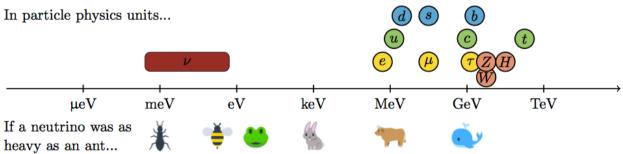
Earth Neutrino@Tsinghua

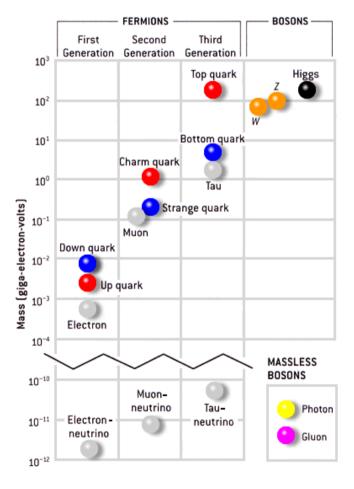
The SM: describes the fundamental interactions that governs the evolution of universe: from 0.1 ns after Big Bang until now

13

The challenges to the SM: Neutrino mass & Oscillation

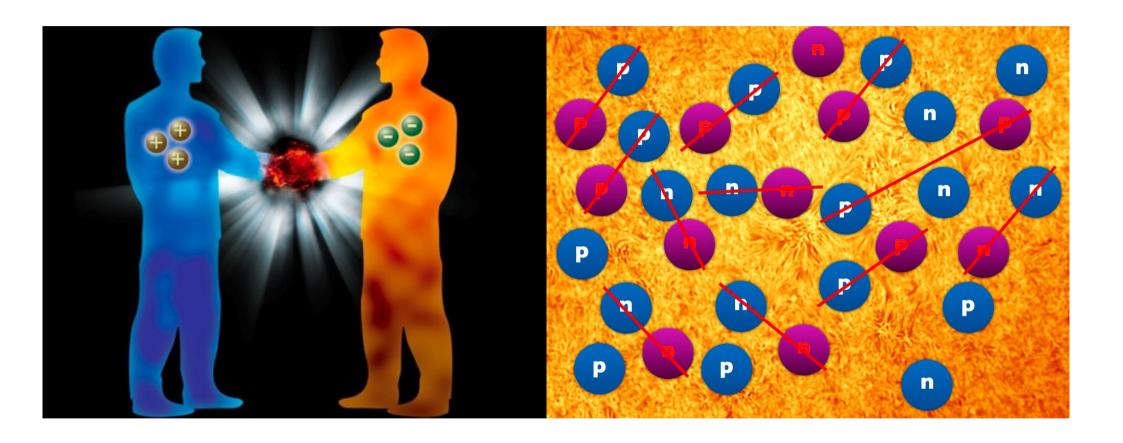



26/8/24


14

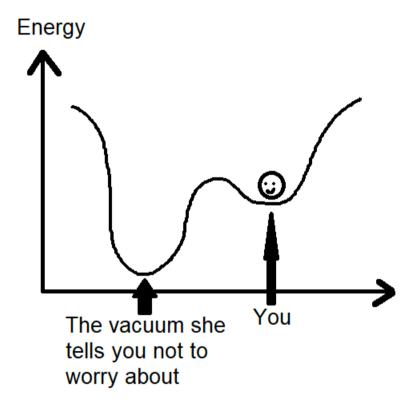
The challenges to the SM: mass hierarhy

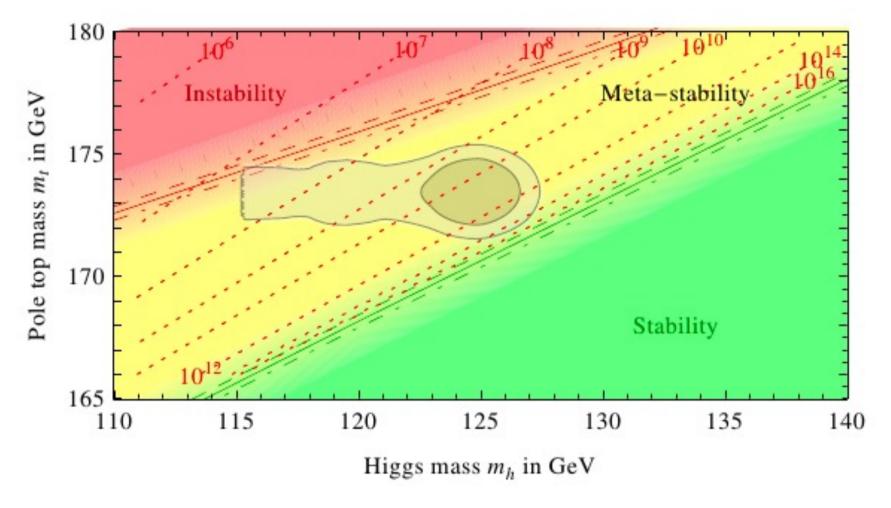
- Electrons mass ~ 1E-5 * Top quark mass
- Neutrino mass ~ 1E-15 * top quark mass!
- Are their mass generated with the same mechanics?



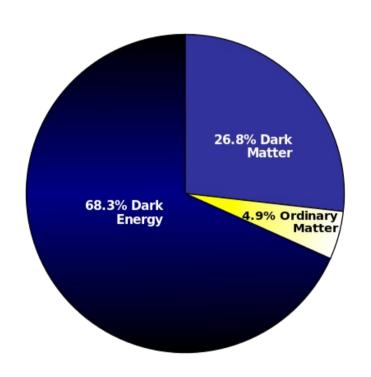
15

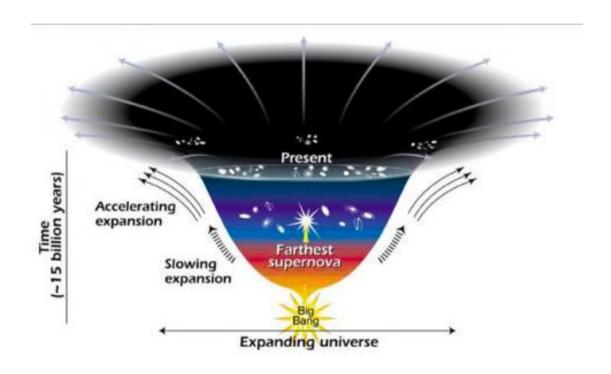
Earth Neutrino@Tsinghua


The challenges to the SM: what's the origin of matter?

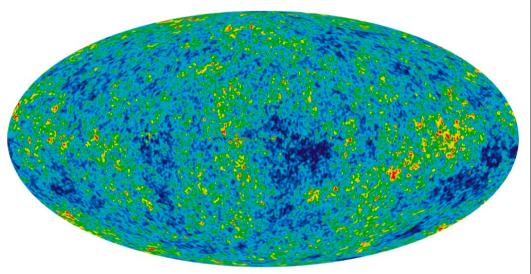

16

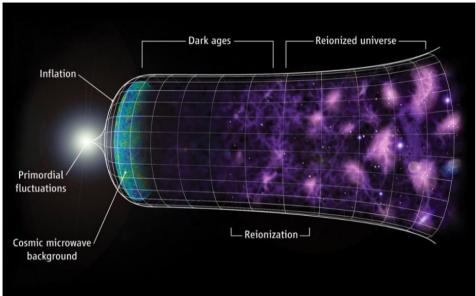
The challenges to the SM: the stability of universe





The challenges to the SM: the stability of universe

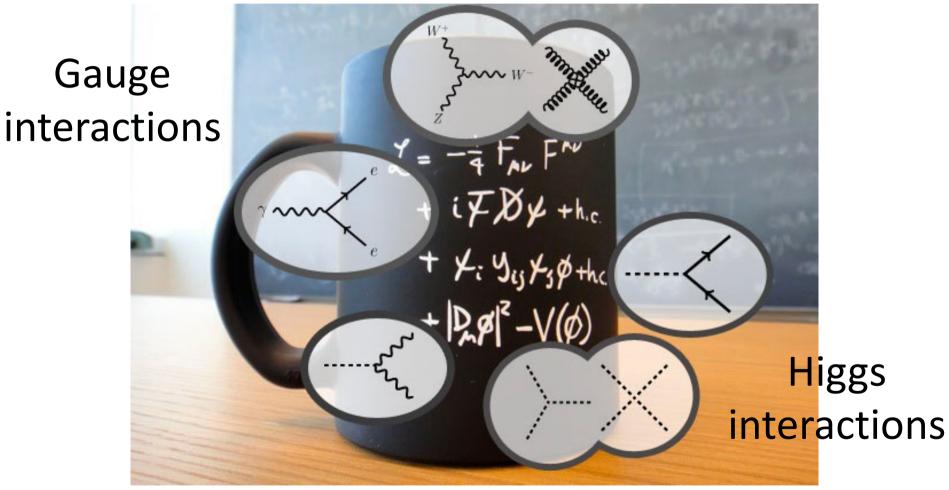

The challenges to the SM: dark matter, dark energy



19

The challenges to the SM: Inflation in the early universe

20

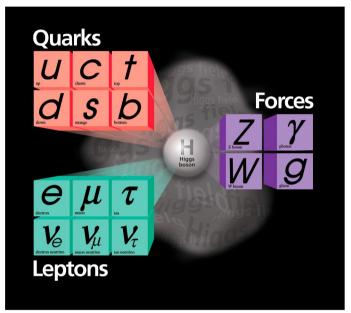

The challenges to the SM

- Inflation
- Mass hierarchy
- Neutrino Mass
- Matter-Anti matter asymmetry
- Stability of the Universe: depends on the Particle Mass
- Dark Matter: nature & origin of mass...
- Dark Energy, Inflation: nature...

The challenges to the SM

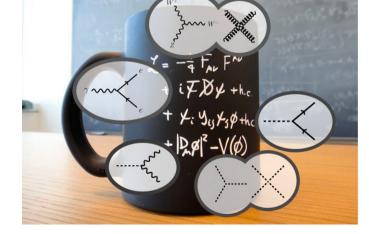
- Inflation
- Mass hierarchy
- Neutrino Mass
- Matter-Anti matter asymmetry
- Stability of the Universe: depends on the Particle Mass
- Dark Matter: nature & origin of mass...
- Dark Energy, Inflation: nature...

The Higgs field, heart of the SM



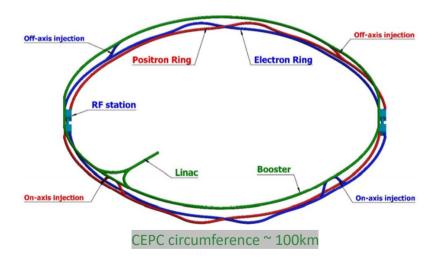
Earth Neutrino@Tsinghua

The Higgs field, origin of mass – associated with most of the Challenges to the SM


- Higgs interactions: beyond the gauge interactions
- Determines the mass of the SM particles,
 - The mass of electron size of the atom
 - The mass of W & Z boson strength of the weak interaction
 - The mass of up & down quark stability of the proton
 - The mass of top & Higgs stability of the universe
- Couples to the matter & anti-matter in a slightly different manner -> origin of matter
- Could well be the origin of dark matter mass, and could be also highly relevant to the dark energy & inflations

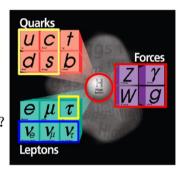
Particle Physics & Collider

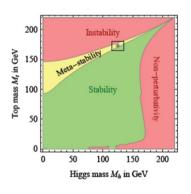
- Discoveries (Nobel Price in Physics)
 - 2015, 2013
 - 2002
 - 1995, 1990
 - 1988, 1984, 1980
 - 1976
 - 1969
 - 1959, 1951, 1950
- Instrumentations
 - 1992
 - 1968, 1960
 - 1958
 - 1948


- Total Total
 - Relevant Nobel prices (theoretical)
 - 2008
 - 2004
 - 1999
 - 1979
 - 1965
 - 1957
 - 1949

25

Earth Neutrino@Tsinghua


A brief introduction to CEPC


- CEPC: an e⁺e⁻ Higgs factory producing H and W/ Z bosons and top quarks aims at discovering new physics beyond the Standard Model
 - CEPC + SppC complex proposed in 2012 right after the Higgs discovery
 - Conceptual Design Report delivered in Nov. 2018, 1st for circular ee Higgs factory
 - R&D reaching maturity, accelerator TDR published at 2023, high-impact innovations
- Proposed to commence the construction in ~2026 to deliver Higgs data in 2030s

Earth Neutrino@Tsinghua

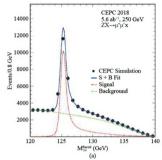
- We have a very successful Standard Model
- But we still have a lot of issues and questions:
 - Anything fundamentals behind the flavor symmetry?
 - Mass hierarchy of elementary particles normal ?
 - Fine tuning of Higgs mass natural?
 - Why a meta-stable vacuum?
 - What are dark matter particles?
 - No CP in the SM to explain Matter-antimatter asymmetry
 - Dirac or Majorana Neutrino mass?
 - Unification of interactions at a high energy?
- We are at a turning point:
 - a new, much deeper theory ?
 - Choices of experimental approaches ?
 - e[±]e⁻, pp, ep, μ[±]μ⁻ or no machine?

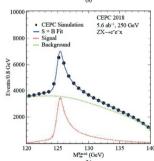
"Small cost" to look for hints. If yes, go for direct searches

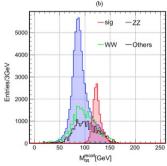
$$\mathcal{L} = \mathcal{L}_{SM} + \sum_i rac{c_i}{M^2} \mathcal{O}_{6,i} \qquad \delta \sim c_i rac{v^2}{M^2}$$

No signal at LHC:

Direct searches: M ~ 1 TeV 10% precision: M ~ 1 TeV


Look for signals at CEPC/FCC-ee:


Precisions exceed HL-LHC ~ 1 order of magnitude (1% precision) → M ~10 TeV


Naturalness will be at ~10⁻⁴ up to 10 TeV

If no New Physics up to 10 TeV, there will be no naturalness → even bigger discovery?

Pressing science questions, best addressed by an e⁺e⁻ Higgs factory (~1% precision)

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs physics at the CEPC'

Fenfen An(安芬芬)¹²³ Vu Bai(白羽)* Chunhui Chen(陈春季)²³ Xin Chen(陈春)* Zhenxing Chen(陈春杪)* Jaoo Giminaraes da Costa* Zhenwei Cui(情景级)* Yaquan Fang(万家美)* 2012 Chengdong Fu(付款税)* Jun Gaoo(後慢)* Varyan Gaoo(森港也)* Yaquan Fang(万家美)* 500 Chengdong Fu(付款税)* Jun Gaoo(森俊)* 2015 Chengdong Fu(付款税)* Jun Gaoo(森港也)* Tao Han(前秒)* Shanne Han(傳載)* Hongjian He(何红我)* 500 Xin Jun Gao(森港也)* Tao Han(前秒)* 500 Xin Jun Han(傳載)* 500 Xin Jun Han(陳春)* 500 Xin Jun Han Jun Han

CEPC Higgs White Paper

University of Chinese Academy of Science (UCAS) Beijing 100049, China

Sechool of Nuclear Science and Technology, University of South China. Hengymag 421001, China

"Beguntared of Physics, Anning University, Nanjing 210093, China

"Department of Physics, Southeast University, Nanjing 210096, China

"Bound of Physics and Astronomy, Shanghai 100 700 gu liversity, RIPAC-Mode, SKIPPC, Shanghai 200240, China

"Issuep-Doo Lee Institute, Shanghai 200240, China

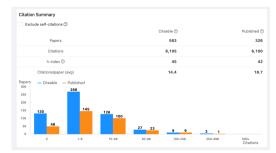
"Issuep-Doo Lee Institute, Shanghai 200240, China

"Issuep-Doo Lee Constitute, Shanghai 200240, China

+o(100) journal/arXiv papers

Received 9 Normaber 2018, Revised 21 January 2019, Published cultae 4 March 2019

*Supported by the Nisonal Key Program for \$4 T Reseats and Development (2018/TAM-00409), CAS Center for Excellence in Particle Physics, Yafing Wang's Science Studies of the Ten Thomasol Talent Project, the CAS-SAFEA International Partnership Program for Centric Research Tenna (D715/01855), IRIP International Control of the Cont


Table 2.1: Precision of the main parameters of interests and observables at the CEPC, from Ref. [1] and the references therein, where the results of Higgs are estimated with a data sample of 20 ab^{-1} . The HL-LHC projections of 3000 fb^{-1} data are used for comparison. [2]

	W,Z and top				
Observable	HL-LHC projections	CEPC precision	Observable	Current precision	CEPC precision
M_H	20 MeV	3 MeV	M_W	9 MeV	0.5 MeV
Γ_H	20%	1.7%	Γ_W	49 MeV	2 MeV
$\sigma(ZH)$	4.2%	0.26%	M_{top}	760 MeV	$\mathcal{O}(10)~\mathrm{MeV}$
B(H o bb)	4.4%	0.14%	M_Z	2.1 MeV	0.1 MeV
$B(H \to cc)$	-	2.0%	Γ_Z	2.3 MeV	0.025 MeV
B(H o gg)	-	0.81%	R_b	3×10^{-3}	2×10^{-4}
$B(H\to WW^*)$	2.8%	0.53%	R_c	1.7×10^{-2}	1×10^{-3}
$B(H\to ZZ^*)$	2.9%	4.2%	R_{μ}	2×10^{-3}	1×10^{-4}
$B(H\to\tau^+\tau^-)$	2.9%	0.42%	$R_{ au}$	1.7×10^{-2}	1×10^{-4}
$B(H o \gamma \gamma)$	2.6%	3.0%	A_{μ}	1.5×10^{-2}	3.5×10^{-5}
$B(H\to \mu^+\mu^-)$	8.2%	6.4%	$A_{ au}$	4.3×10^{-3}	$7 imes 10^{-5}$
$B(H \to Z\gamma)$	20%	8.5%	A_b	2×10^{-2}	2×10^{-4}
B upper $(H o ext{inv.})$	2.5%	0.07%	$N_{ u}$	2.5×10^{-3}	2×10^{-4}

Scientific Significance quantified by CEPC physics studies, via full simulation/phenomenology studies:

- Higgs: Precisions exceed HL-LHC ~ 1 order of magnitude.
- EW: Precision improved from current limit by 1-2 orders.
- Flavor Physics, sensitive to NP of 10 TeV or even higher.
- Sensitive to varies of NP signal.

• ..

28

Earth Neutrino@Tsinghua

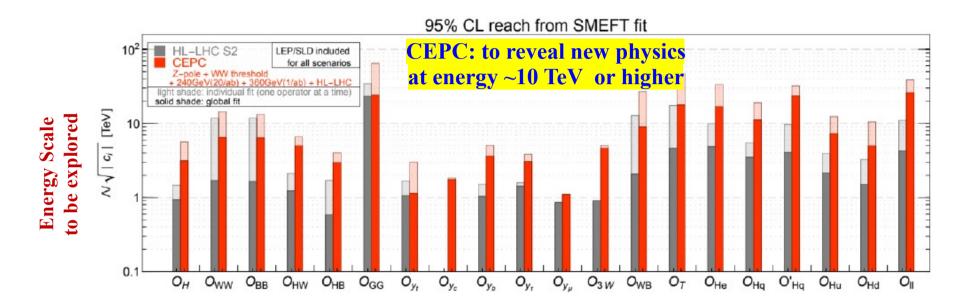


Figure 2.1: Covered energy scales of new physics from CPEC and HL-LHC, based on measurements of operators in the framework of the Standard Model Effective Field Theory (SMEFT). [1]

CEPC targets a major breakthrough in basic research, will greatly expand our understanding of the world.

The scientific importance and strategical value of an electron positron Higgs factory is clearly identified.

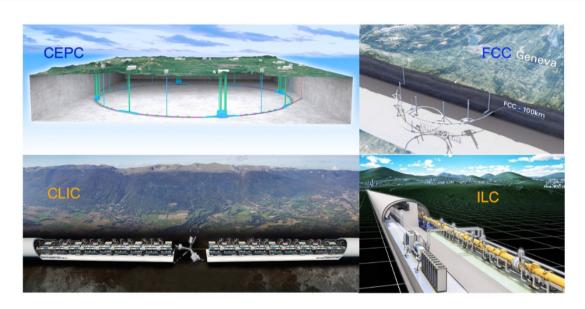
clear consensus in HEP community

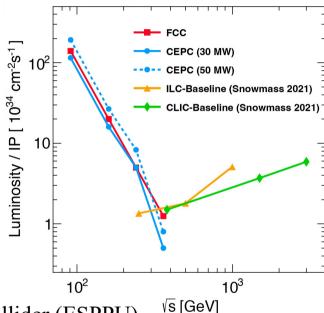
2013, 2016: **the CEPC is the best approach** and a major historical opportunity for the national development of accelerator-based high-energy physics program.

An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

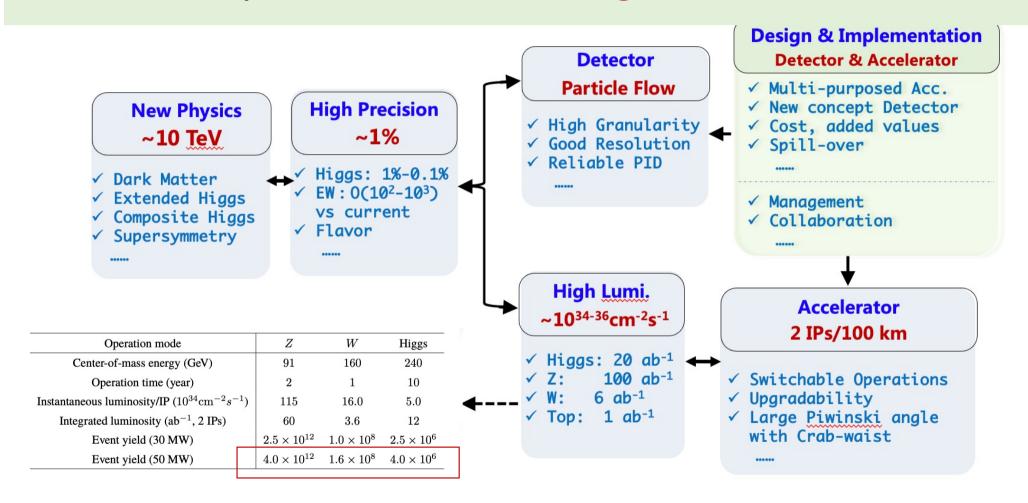
Pathways to Innovation and Discovery in Particle Physics

Report of the Particle Physics Project Prioritization Panel 2023



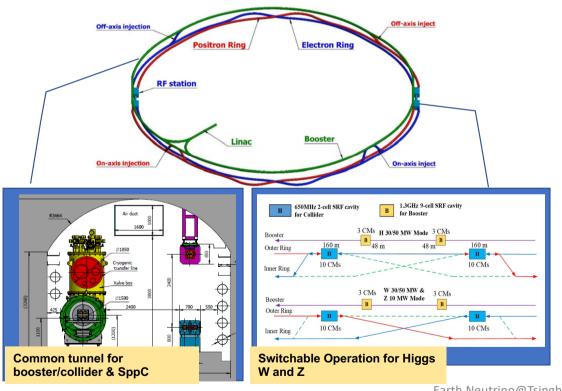

- The panel would consider the following:
- 1.The level and nature of US contribution in a specific Higgs factory including an evaluation of the associated schedule, budget, and risks once crucial information becomes available.
- 2.Mid- and large-scale **test and demonstrator facilities** in the accelerator and collider R&D portfolios
- 3.A plan for the evolution of the Fermilab accelerator complex consistent with the longterm vision in this report, which may commence construction in the event of a more favorable budget situation.

In April 2022, the International Committee for Future Accelerators (ICFA) "reconfirmed the international consensus on the importance of a Higgs factory as the highest priority for realizing the scientific goals of particle physics", and expressed support for the above-mentioned Higgs factory proposals. Recently, the United States also proposed a new linear collider concept based on the cool copper collider (C3) technology [31].


International competition & Comparative advantages

- Electron-positron Higgs factories identified as top priority for future collider (ESPPU).
- CEPC has strong advantages among mature electron-positron Higgs factories (design report delivered),
 - Earlier data: collision expected in 2030s (vs. FCC-ee ~ 2040s), larger tunnel cross section (ee, pp coexistence)
 - Higher precision vs. linear colliders with more Higgs & Z; potential for proton collider upgrade.
 - Lower cost vs. FCC-ee, $\sim 1/2$ the construction cost with similar luminosity up to 240 GeV.
- CEPC is well recognized in particle physics world, as a major choice for the future flagship facility.

Key scientific and technological issues (route)



Earth Neutrino@Tsinghua

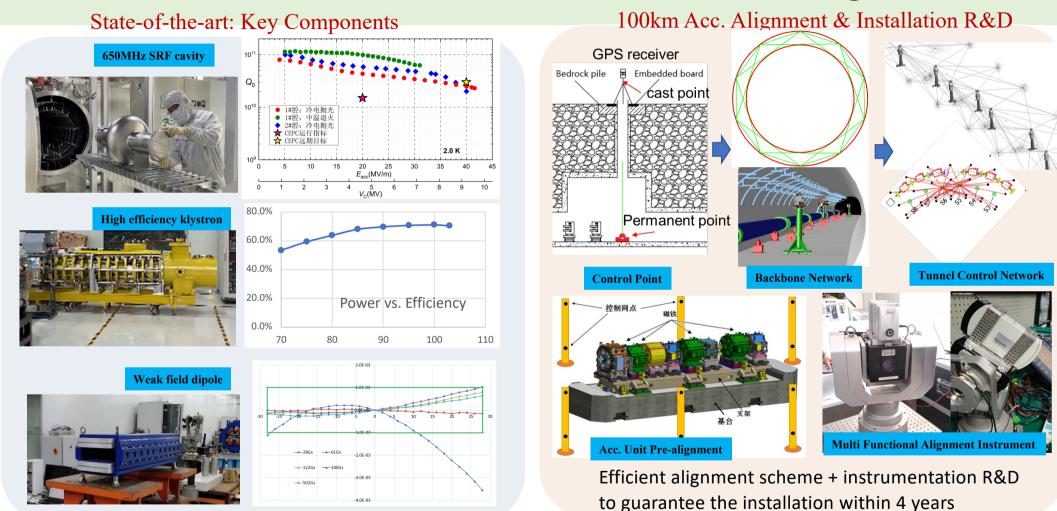
32

Design of experimental facility and technical requirements

- Circular collider: Higher luminosity than a linear collider
- 100km circumference: Optimum total cost, good also for SppC
- **Shared tunnel:** Accommodate **CEPC** booster &collider and **SppC**
- Switchable operation: Higgs, W/Z, top

Cost optimization vs.. circumference → 50MW 1M higgs+1TZ --- 4IP 30MW 2M higgs +1TZ 1800 otal cost_H/Z/top(100million) → 30MW 2M higgs+1TZ 1600 4IP 30MW 2M higgs+1TZ+1M top 1400 30MW 2M higgs+1TZ+1M top 30MW 1M higgs+1TZ+1M top 1200 - 50MW 1M higgs+1TZ+1M top(50MW) 1000 800 600 400 60 20 Circumference (km)

D. Wang et al 2022 JINST 17 P10018


33

Main Parameters: High lun

ninosity as a Higgs Factory	Higgs	W	Z	ttbar	
Number of IPs	2				
Circumference [km]	100.0				
SR power per beam [MW]	50				
Energy [GeV]	120	80	45.5	180	
Bunch number	415	2161	19918	59	
Emittance (ɛx/ɛy) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7	
Beam size at IP (σx/σy) [um/nm]	15/36	13/42	6/35	39/113	
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9	
Beam-beam parameters $(\xi x/\xi y)$	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1	
RF frequency [MHz]	650				
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	27	192	0.83	

Earth Neutrino@Tsinghua

Status and maturities of the CEPC technologies

Earth Neutrino@Tsinghua

Design of experimental facility and technical requirements

Key Technology

Status

Selected Leading Technologies

- High efficiency klystron
- High Q SRF cavity
- Novel magnet
- PWFA injector
- HTS high field magnet

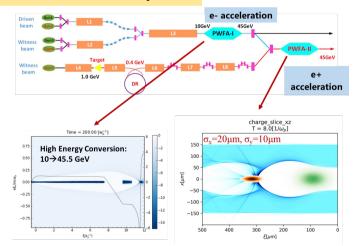
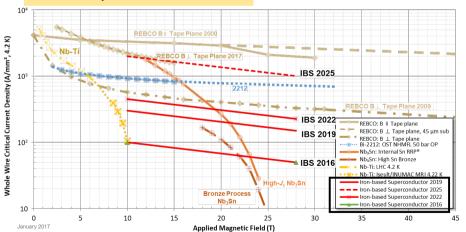

- Current eff.>70%, aim at 80%
- Exceeds CEPC requirement
- CEPC requirement met
- Design positron acceleration scheme, >10GeV beam
- HTS with IBS

Table 5.3: Status of key technology R&D for CEPC, in comparison with the status quo of world leading accelerator laboratories


Device	Requirement	IHEP	CERN	FNAL	KEK	LBNL
		status	status	status	status	status
1.3 GHz	$Q=3 \times 10^{10}$	$Q=4.3 \times 10^{10}$	Preliminary	Comparable	Comparable	N/A
SRF cavity	@24 MV/m	@31 MV/m	progress	to IHEP	to IHEP	
650 MHz	$Q=4 \times 10^{10}$	$Q=6 \times 10^{10}$	N/A	Comparable to	N/A	N/A
2-cell SRF cavity	@22 MV/m	@22 MV/m		IHEP		
High-efficiency	Efficiency	Efficiency	R&D on Efficiency	N/A	Efficiency	N/A
klystron	≥ 80%	$\approx 70\%$	$\approx 80\%$		$\approx 60\%$	
High-field	20-24 T	12.5 T achieved	14-16 T	14.5 T	10 T	14-16 T
superconducting		next goal is 16 T				
magnet						

world leading technical performance

PWFA as an alternative Linac injection

Fast development of IBS material

Earth Neutrino@Tsinghua

Status and maturities of the CEPC technologies

✓ Specification Met

☑ Prototype Manufactured

• •					
	Accelerator	Cost (billion CNY)	Ratio		
1	Magnets	4.47	27.3%		
1	Vacuum	3.00	18.3%		
$\overline{\mathbf{C}}$	RF power source	1.50	9.1%		
1	Mechanics	1.24	7.6%		
1	Magnet power supplies	1.14	7.0%		
1	SCRF	1.16	7.1%		
1	Cryogenics	1.06	6.5%		
√	Linac and sources	0.91	5.5%		
1	Instrumentation	0.87	5.3%		
$\overline{\mathbf{Y}}$	Control	0.39	2.4%		
 ✓	Survey and alignment	0.40	2.4%		
✓	Radiation protection	0.17	1.0%		
	SC magnets	0.07	0.4%		
1	Damping ring	0.04	0.2%		

Table 5.1: Summary of key technologies under R&D essential for CEPC

Device	Accelerator	Quantity	CEPC specification	R&D status
1.3 GHz SRF cavity (9-cell)	Booster	96	Q=3×10 ¹⁰ @ 24 MV/m	Specification met
650 MHz SRF cavity (2-cell)	Collider	240	$Q = 4 \times 10^{10} @22 \ \mathrm{MV/m}$	Specification met
650 MHz	Collider	120	Efficiency: 80%	Prototype
klystron			Power: 800 kW	manufactured
C-band NC	Linac	292	Gradient: 45 MV/m	Prototype
accelerating tube				manufactured
S-band	Linac	35	Peak power gain: 7 dB	Prototype
bunch compressor				manufactured
Positron source	Linac	1	Central peak magnetic	Specification met
flux concentrator			field >6 T	
Dual-aperture	Collider	2384	Field: 140 Gs-560 Gs	Specification met
dipole magnet			aperture: 70 mm	
			length: 28.7 m; harmonic $< 5 \times 10^{-4}$	
			relative field difference<0.5%	
Dual-aperture	Collider	2392	Gradient: 3.2-12.8 T/m	Specification met
quadrupole magnet			length: 2 m; harmonic $< 5 \times 10^{-4}$	
			aperture: 76 mm	
			relative field difference<0.5%	
Weak field	Booster	16320	Field error	Specification met
dipole			$\leq 10^{-3}$ @60 Gs	
Electrostatic	Collider	32	Electric field: 2.0 MV/m	Specification met
separator			field uniformity: 5×10^{-4}	by prototype
			good field region: 46 mm*11 mm	
Cryogenic	Collider/	4	18 kW @ 4.5 K	Collaboration with
refrigerator	Booster			IPC CAS,
				a refrigerator system
				of 2.5 kW @ 4.5 K
				has been developed
Ceramic vacuum	Transport	~ 20	$75\times 56\times 5\times 1200\mathrm{mm}$	Prototype
chamber and	lines			in production
coating				
MDI SCQ	Collider	8	Gradient: 136T/m; length: 2m	Prototype
			Aperture: 40mm; included angle: 33mrad	in manufacture
Visual instrument	All	11	Image accuracy: 5 μm+(5 μm/m)	Prototype complete
			horizontal angle: 1.8 arc-second	
			vertical angle: 2.2 arc-second	

Table 5.2: Summary of key technologies in engineering applications essential for CEPC

Device type	Accelerator	Quantity	CEPC specifications
S-band copper	Linac	111	~30 MV/m
accelerating tube			
vacuum chamber	Collider/	Total length	Length: 6 m
and coating	Booster	200 km	aperture: 56 mm
			vacuum: 3×10^{-10} Torr
			NEG coating pump speed for H_2 :
			0.5 L/s· cm ²
BPM and	All	~5000	Closed orbit
electronics			resolution: $0.6~\mu m$
kicker & fast pulser	Transport	~25	Pulse width <10 ns (strip-line)
	line		trapezoidal pulse width <250 ns (slotted-pipe)
Lambertson septum	Transport line	~20	Septum thickness ≤3.5 mm (in-air)
			thickness ≤ 2 mm (in-vacuum)
Power supply	All	9294	Stability 100-1000 ppm
RF-shielded	Collider	24000	Contact force 125±25 g/finger
bellows	Booster	/12000	

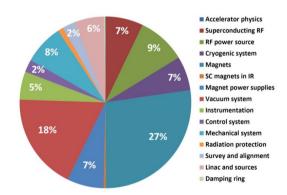


Figure 12.3: Cost breakdown of the CEPC accelerator technical systems.

36

Upgrade capability and added values

SR power per beam upgrade to 50 MW: High Luminosity (8E34 @ 240 GeV)

The center-of-mass energy can increase to 360 GeV: top quark data

Add a super proton-proton collider (SppC) with c.m.s >100 TeV

Expandability: High energy & high flux synchrotron light source provides gamma-ray energy up to 300 MeV, critical for multi-disciplinary science

Boost the developments of multiple technologies:

Fast electronics, mechanics, vacuum, beam diagnostics, RF acceleration, cryogenic system, novel magnets, high-accuracy power supplies, control systems, big data, automation and intelligence, etc

- ➤ Upgradable scenarios: compatibilities included in design and construction
- > Upgrades in several highly valuable ways, bring up discovery power, lifetime spans > 5 decades

37

> Significant spillover effects on multidisciplinary sciences and applications

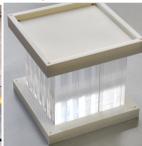
Status and maturities of the CEPC technologies

- Extensive detector R&D benefitted from experience
 - > Silicon strip: Experience from ATLAS upgrade
 - > MDI, Drift chamber & SC magnet : Experience from BESIII
- CEPC R&D on key technologies
 - Silicon pixel, silicon tracker and TPC
 - > PFA calorimeter

- With international partners, all sub-detector covered
 - > PFA calorimeter: with CALICE Collaboration
 - > TPC: with LCTPC Collaboration
 - > Drift cham: with Italian colleague
 - ➤ Silicon tracker: with UK/Germany/Italian colleague
 - ➤ Silicon vertex: with French/Spain colleague

Prototypes under evaluation

Sub-detector	Specification	Requirement	World-class level	CEPC prototype
Pixel detector	Pixel detector Spatial resolution		$3-5 \mu\mathrm{m}$ [12, 13]	$3 - 5 \mu{\rm m} [14-16]$
TPC/drift chamber	dE/dx (dN/dx) resolution	$\sim 2\%$	$\sim 4\%$ [17, 18]	~ 4% [19–21]
				Prototype built
Scintillator-W	Energy resolution	$< 15\%/\sqrt{E({ m GeV})}$	12.5% [22]	to be measured
ECal	Granularity	$\sim 2 \times 2 \text{ cm}^2$		$0.5 \times 0.5 \; \mathrm{cm}^2$
PFA calorimeter				Prototyping [25]
4D crystal ECal	EM energy resolution	$\sim 3\%/\sqrt{E({ m GeV})}$	$2\%/\sqrt{E({ m GeV})}$ [23, 24]	$\sim 3\%/\sqrt{E({ m GeV})}$
	3D Granularity	$\sim 2 \times 2 \times 2 \text{ cm}^3$	N/A	$\sim 2 \times 2 \times 2 \text{ cm}^3$
Scintillator-Steel	Support PFA,			Prototyping
HCal	Single hadron σ_E^{had}	$< 60\%/\sqrt{E({ m GeV})}$	$57.6/\sqrt{E(\text{GeV})}\%$ [26]	
Scintillating	Support PFA			Prototyping
glass HCal	Single hadron σ_E^{had}	$\sim 40\%/\sqrt{E({ m GeV})}$) N/A	$\sim 40\%/\sqrt{E({ m GeV}}$
Low-mass	Magnet field strength	$2 \mathrm{~T} - 3 \mathrm{~T}$	1 T – 4 T [27–29]	Prototyping
Solenoid magnet	Thickness	$< 150 \; \mathrm{mm}$	$> 270 \; \mathrm{mm}$	


Vertex detector R & D (3-5 μm reso.)

PFA scintillator-W ECAL

4D crystal ECAL

38

Earth Neutrino@Tsinghua

CEPC Major Milestones

CEPC Accelerator TDR Review June 12-16, 2023, Hong Kong

CEPC Accelerator TDR Cost Review Sept. 11-15, 2023, Hong Kong

Domestic Civil Engineering Cost Review, June 26, 2023, IHEP

9th CEPC IAC 2023 Meeting Oct. 30-31, 2023, IHEP

CEPC Accelerator TDR released in December, 2023

IHEP-CEPC-DR-2023-01
IHEP-AC-2023-01

CEPC

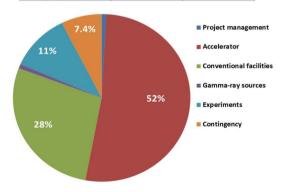
Technical Design Report

Accelerator

arXiv:2312.14363
1114 authors
278 institutes
(159 foreign institutes)
38 countries

The CEPC Study Group

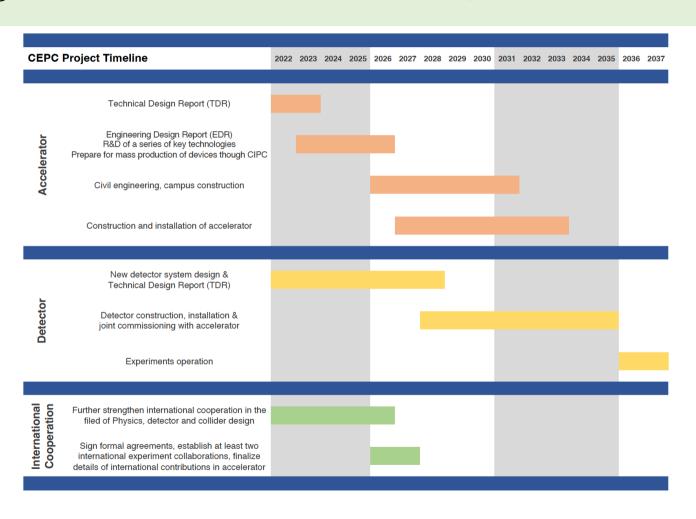
December 2023


Earth Neutrino@Tsinghua

Distribution of CEPC Project TDR cost of 36.4B RMB (~4.7B Euro)

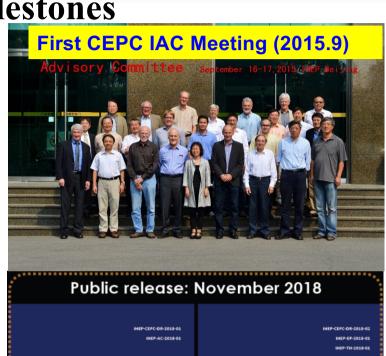
Table 12.1.2: CEPC project cost breakdown, (Unit: 100,000,000 yuan)

Total	364	100%
Project management	3	0.8%
Accelerator	190	52%
Conventional facilities	101	28%
Gamma-ray beam lines	3	0.8%
Experiments	40	11%
Contingency (8%)	27	7.4%


Industrial engagement

- CIPC, established in 2017, composed of ~ 70 high tech. enterprises, covers Superconducting materials, Superconducting cavities, cryomodules, cryogenics, Klystrons, electronics, power source, vacuum, civil engineering, etc. CIPC actively joins the Key technology R&D and prepares for the mass production for the CEPC construction.
- CEPC study group is **surveying main international suppliers.**
- CEPC strongly promote these relevant technology development (cost-benefit).

Earth Neutrino@Tsinghua


Budgets for R&D and construction, and the timeline

CEPC Major Milestones

...Peter Higgs...

Earth Neutrino@Tsinghua

Summary

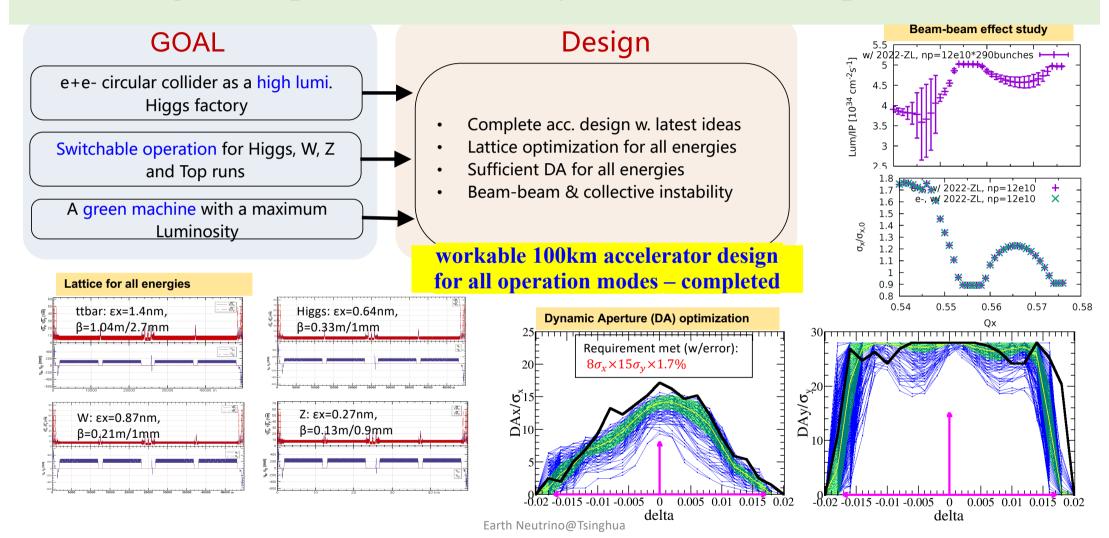
Particle Physics

- Tremendous successful. Be summarized into the SM
- Lots of puzzles including origin of matter, mass, dark matter, etc... while a Higgs factory could be the best approach for our future exploration.

CEPC, an electro positron Higgs factory

- will address most pressing & critical science problems
- adds enormous strategic values; has many advantages; will be in a leading position if realized.
- design-technologies reaching maturity, offers great upgrade options and many added values and benefits
- will position China to be a leading position in particle physics and contribute to the world in a major way.

Earth Neutrino@Tsinghua


Back up

Earth Neutrino@Tsinghua

26/8/24 45

Scientific objectives, significance, and strategic value

- CEPC, as a global high energy physics facility, will not only be a flagship of particle physics, but also of the global science. It can promote China to a leading position in the international community of particle physics.
 - Science: a major player in fundamental science & innovation, with significant contributions to the mankind
 - Technology: promote the technology not only for China, but also for the world
 - International Cooperation: host thousands of world-class talents for cooperative innovation, enhance the international cooperation, and may contribute to the World Peace.
 - Education & Training: train talents with international experience
 - Economics: cultivate high-tech enterprises; boost local economy with a science center

8/24/24 47

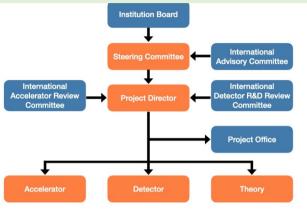
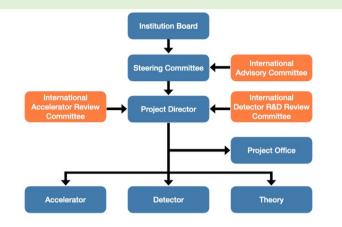


Table 7.2: Team of Leading and core scientists of the CEPC

	-	
Name	Brief introduction	Role in the CEPC team
Yifang Wang	Academician of the CAS, direc-	The leader of CEPC, chair of the SC
	tor of IHEP	
Xinchou Lou	Professor of IHEP	Project manager, member of the SC
Yuanning Gao	Academician of the CAS, head	Chair of the IB, member of the SC
	of physics school of PKU	
Jie Gao	Professor of IHEP	Convener of accelerator group, vice
		chair of the IB, member of the SC
Haijun Yang	Professor of SJTU	Deputy project manager, member of
		the SC
Jianbei Liu	Professor of USTC	Convener of detector group, mem-
N/lan	200mer	brof the arminger
Hongjan Ae	Off Custo	Covencio de o croup momer
		of the SC
Shan Jin	Professor of NJU Professor of NJD Professor of NJD	Member of the SG
Nu XI	Professor of MP	
Meng Wang	Professor of JD	Member of the SC
Qinghong Cao	Professor of PKU	Member of the SC
Wei Lu	Professor of THU	Member of the SC
Joao Osin arae: d Cost i	Profesor of HEC	Convener of detector group
Jianchun Wang	Professor of IHEP	Convener of detector group
Yuhui Li	Professor of IHEP	Convener of accelerator group
Chenghui Yu	Professor of IHEP	Convener of accelerator group
Jingyu Tang	Professor of IHEP	Convener of accelerator group
Xiaogang He	Professor of SJTU	Convener of theory group
Jianping Ma	Professor of ITP	Convener of theory group

- Institution Board: 32 institutes, top universities/institutes in China
- Management team: comprehensive management experience at construction projects of BEPCII/CSNS/HEPS, and international projects of BESIII/Daya Bay/JUNO/...
- Accelerator team: fully over all disciplines with rich experiences at BEPCII, HEPS...
- Physics and Detector team: fully over all disciplines with rich experiences at BESIII, Daya Bay, JUNO, ATLAS, CMS, ...

Table 7.4: Team of the CEPC detector system


Number Sub-system Conveners Institutions

Team (senior staff)

				ranioci	Sub-system	Conveners	mottutions	ream (semoi stan)
	Table 7.3: Team	of the CEPC accelerator sys	tem	1	Pixel Vertex	Zhijun Liang, Qun Ouyang,	CCNU, IFAE, IHEP, NJU,	~ 40
Number	Sub-system	Convener	Team (senior staff)		Detector	Xiangming Sun, Wei Wei	NWPU, SDU, Strasbourg,	
Tullioci	Sub-system			2	Silicon	Harald Fox, Meng Wang,	IHEP, INFN, KIT, Lan-	~ 60
1	Accelerator physics	Chenghui Yu, Yuan Zhang	18		Tracker	Hongbo Zhu	caster, Oxford, Queen Mary,	
2	Magnets	Wen Kang, Fusan Chen	12				RAL, SDU, Tsinghua, Bris-	
3	Cryogenic system	Rui Ge, Ruixiong Han	11				tol, Edinburgh, Livepool, USTC, Warwick, Sheffield,	
4	SC RF system	Jiyuan Zhai, Peng Sha	12				ZJU,	
5	Beam Instrumentation	Yanfeng Sui, Junhui Yue	7	3	Gaseous de-	Franco Bedeschi, Zhi Deng,	CEA-Saclay, DESY,	~ 30
6	SC magnets	Qingjin Xu	10		tector	Mingyi Dong, Huirong Qi	LCTPC Collab., IHEP,	
O	3C magnets	Qiligjili Au	. ~~~	م مالم ام		-r-tt-	INFN, NIKHEF, THU .	
7	Power supply 2 C	eelerator .	+ ~300	aetec	l la ne	Spare n S	Jeg Centily	~ 10
8	Injection & extraction	Jinhui Chen	7	5	Calorimetry	Roberto Ferrari, Jianbei Liu,	CALICE Collab., IHEF,	~ 40
9	Mechanical system	Jiffili Wang Lan Deng E Haiyi Dong, Yongsheng iyla	C/BECI	11 / 11 IN	Ω/I	Haijun Yang, Yang Liu	INFN, SJTU, USTC	
10	Vacuum system	Haiyi Dong, Yongsheng ivla	C/ DESI	แนวบำ	luor	Xiaolong Wang	DI HEEKER SII E	~ 20
11	Control system	Ge lei, Gang Li	6	7	Physics	Manqi Ruan, Yaquan Fang,	IHEP, FDU, SJTU,	~ 80
12	Linac injector	Jingyi Li, Jingru Zhang	13 ap	prove	a	Liantao Wang, Mingshui		
13	Radiation protection	Zhongjian Ma	3	8	Software	Chen Shengseng Sun, Weidong	IHEP, SDU, FDU,	~ 20
	Sum 1			8	Software		IHEF, SDU, FDU,	~ 20
	Suiii				Li, Xingtao Huang			
Sum							~ 300	

Earth Neutrino@Tsinghua

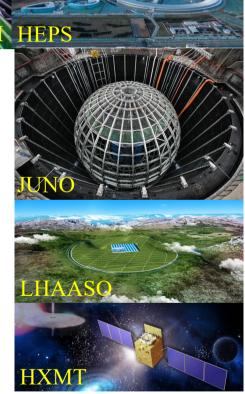
International Committees

Name	Affiliation	Country
Tatsuya Nakada	EPFL	Japan
Steinar Stapnes	CERN	Norway
Rohini Godbole	CHEP, Bangalore	India
Michelangelo Mangano	CERN	Switzerland
Michael Davier	LAL	France
Lucie Linssen	CERN	Holland
Luciano Maiani	U. Rome	San Marino
Joe Lykken	Fermilab	U.S.
lan Shipsey	Oxford/DESY	U.K.
Hitoshi Murayama	IPMU/UC Berkeley	Japan
Geoffrey Taylor	U. Melbourne	Australia
Eugene Levichev	BINP	Russia
David Gross	UC Santa Barbara	U.S.
Brian Foster	Oxford	U.K
Marcel Demarteau	ORNL	USA
Barry Barish	Caltech	USA
Maria Enrica Biagini	INFN Frascati	Italy
Yuan-Hann Chang	IPAS	Taiwan, China
Akira Yamamoto	KEK	Japan
Hongwei Zhao	Institute of Modern Physics, CAS	China
Andrew Cohen	University of Science and Techbnology	Hong Kong, China
Karl Jakobs	University of Freiburg/CERN	Germany
Beate Heinemann	DESY	Germany

International Accelerator Review Committee

- Phillip Bambade, LAL
- Marica Enrica Biagini (Chair), INFN
- Brian Foster, DESY/University of Hamburg & Oxford University
- In-Soo Ko, POSTTECH
- Eugene Levichev, BINP
- Katsunobu Oide, CERN & KEK
- · Anatolii Sidorin, JINR
- Steinar Stapnes, CERN
- Makoto Tobiyama, KEK
- Zhentana Zhao, SINAP
- Norihito Ohuchi, KEK
- Carlo Pagani, INFN-Milano

International Detector R&D Review Committee


- Jim Brau, USA, Oregon
- · Valter Bonvicini, Italy, Trieste
- · Ariella Cattai, CERN, CERN
- Cristinel Diaconu, France, Marseille
- Brian Foster, UK, Oxford
- · Liang Han, China, USTC
- · Dave Newbold, UK, RAL (chair)
- Andreas Schopper, CERN, CERN
- Abe Seiden, USA, UCSC
- Laurent Serin, France, LAL
- Steinar Stapnes, CERN, CERN
- Roberto Tenchini, Italy, INFN
- Ivan Villa Alvarez, Spain, Santader
- Hitoshi Yamamoto, Japan, Tohoku

IAC: global renowned scientists and top laboratory or project leaders who have ample experience in project management, planning, and execution of strategies, operating since 2015

IARC & IDRC: leading experts of this field, provide guide to the project director

- IHEP is one of the few institution in the world that
 - has rich management experience and successful constructed many large scientific facilities
 - has a full coverage of all technical disciplines for accelerators and detectors, in particular for the design and construction of circular e+e-collider(BEPCII) and the detector(BESIII)
 - has all needed infrastructure for the construction of large facilities
 - has successfully hosted international projects such as BESIII, Daya Bay, JUNO, LHAASO, etc.
- CEPC is committed by IHEP and workplan endorsed by CAS

International collaboration

CEPC attracts significant International participation

- Conceptual design report: 1143 authors from 221 institutes (including 140 International Institutes)
- More than 20 MoUs signed and executed
- Intensive collaboration on Physics studies
- Oversea scientists made substantial contributions to the R&D, especially the detector system
- CEPC International Workshop since 2014
- EU-US versions of CEPC WS: Next one at Marseille
- Annual working month at HKIAS (since 2015)

Earth Neutrino@Tsinghua

International influence

CEPC Input to the ESPP 2018 - Physics and Detector

CEPC Physics-Detector Study Group

Abstract

future plann CEPC

The Higgs boson discovered in 2012 by the ATLAS and CMS Collaborations at the Large Hadron Collider (LHC), plays a central role in the Standard Model. Measuring its properties precisely will advance our understandings of some of the most important questions in particle physics, such as the naturalness of the electroweak scale and the nature of the electroweak phase transition. The Higgs boson could also be a window for exploring new physics, such as dark matter and its associated dark sector, heavy sterile neutrino, et al. The Circular Electron Positron Collider (CEPC), proposed by the Chinese High Energy community in 2012, is designed to run at a center-of-mass energy of 240 GeV as a Higgs factory. With about one million Higgs bosons produced, many of the major Higgs boson couplings can be measured with precisions about one order of magnitude better than those achievable at the High Luminosity-LHC. The CEPC is also designed to run at the Z-pole and the W pair production threshold creating close to one trillion Z bosons and 100 million W observables l **ESPPU** input complementa excellent opp hosons. The tau lentons produced from the decays of the Z bosons are interesting for flavor physics. The clean collision environment also makes the CEPC an ideal facility to perform precision OCD measurements. Several detector concents have been proposed for arXiv: 1901.03170 Conce

collaboration would be crucial at this stage. This submission for consideration by the ESPP is part of our dedicated effort in seeking international collaboration

and support. Given the importance of the precision Higgs boson measurements.

the ongoing CEPC activities do not diminish our interests in participating in the

international collaborations of other future electron-positron collider based

Snowmass2021 White Paper AF3- CEPC

CEPC Accelerator Study Group¹

1. Design Overview

1.1 Introduction and status

The discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) in July 2012 raised new opportunities for large-scale accelerations. The Higgs boson is the heart of the Standard Model (SM), and is at the center of many biggest mysteries, such as the large hierarchy between the weak scale and the Planck scale, the nature of the electroweak phase transition, the original of mass, the nature of dark matter, the stability of vacuum, etc. and many other related questions. Precise measurements of the properties of the Higgs boson serve as probes of the underlying fundamental physics principles of the SM and beyond. Due to the modest Higgs boson mass of 125 GeV, it is possible to produce it in the relatively clean environment of a circular electron-positron collider with high luminosity, new technologies, low cost, and reduced power consumption. In September 2012, Chinese scientists proposed a 240 GeV Circular Electron Positron Collider (CEPC), serving two large detectors for Higgs studies and other trains a deman in Vin 1 The 100 lbm mass of such a machine (

macmine (i chergies
well beyo	Snowmass input	
The (onowinass input	hosted by
China. It	•	the ICFA
Workshop	"Accelerators for a Higgs Factory: Linear vs. Circular" (HI	72012) in
November	2012 at Fermilab. A Preliminary Conceptual Design Report (Pre-	CDR, the
White R	OCIT TELLET AND LONG CHI TI D. D.	(the
Yellow I		was
made. T	arXiv: 2203.09451) [3]
has beer	ai / iv. 2203.03731	r an
internati		018.
In May	2205.08553	ergy
Physics	2205.06555	DR,
CEPC a		d by
CEPC Into	ernational Advisory Committee (IAC). In TDR phase, CEPC op-	timization
design wit	h higher performance compared with CDR and the key technologic	es such as

650MHz high power and high efficiency klystron, high quality SRF accelerator

technology, high precision magnets for booster and collider rings, vacuum system.

MDI, etc. have been carried out, and the CEPC accelerator TDR will be completed at

- CEPC provides critical input to ESPPU & Snowmass as a major player
- Team member actively participated International study(ESPPU and Snowmass committees) and Panel discussions

CEPC attracts intensive international collaboration, ensuring that the CEPC design and technology are among the most advanced in the world. once approved, CEPC is expected to be substantially supported by international community.

¹ Correspondance: J. Gao, Institute of High Energy Physics, CAS, China Email: anni@ihem ac.cn.

Status and maturities of the CEPC technologies

- CEPC received ~ 260 Million CNY from MOST, CAS, NSFC, etc for R&D
- Large amount of key technologies validated in other projects by IHEP: BEPCII, HEPS, ...

CEPC R&D ~ 50% cost of acc. components

BEPCII / HEPS

 $\sim 40\%$ cost of acc.

components

- High efficiency klystron
- ➤ 650MHz SRF cavities
- ➤ Key components to e+ source
- **➤** High performance Linac
- **Electrostatic Deflector**
- > Cryogenic system
- ➤ High precision magnet
- > Stable magnet power source
- > Vacuum chamber with NEG coating
- > Instrumentation, Feedback system
- > Traditional RF power source
- > SRF cavities

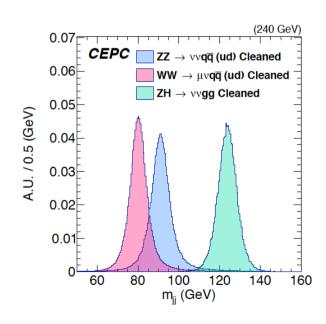
- ➤ Novel magnets: Weak field dipole, dual aperture magnets
- > Extremely fast injection/extraction
- > Vacuum chamber tech.
- > Survey & Alignment for ultra large Acc.
- > MDI
- > Electron Source, traditional Linac
- > Survey & Alignment
- Ultra stable mechanics
- > Radiation protection
- Cryogenic system
- > MDI

 $\sim 10\%$ missing items consist of anticipated challenges in the machine integration, commissioning etc. and the corresponding international contribution

Innovative Design	 100km Full/Partial Double Rings Switchable operation for Higgs, W and Z Flexible injection modes to satisfy different energies World's 1st design of a high energy/flux gamma-ray synchrotron light
Technical Performance	 High efficiency Klystron (aim at highest transfer efficiency) High performance SRF cavities (state-of-the-art Q and gradient) Novel magnets: Weak field dipole, dual aperture magnets (First Qualified Prototype)
Major Technology Breakthrough	 Plasma wakefield acceleration for Injector(New Acceleration Principle) High field superconducting magnet (Iron based HTS proposal)

Innovative designs and key technology R&D fulfill the challenging requirement.

Detector


Requirements
boson mass
resolution
(BMR ~3%)

Challenges

Support Particle flow with

High granularity

High precision

Novel detector design based on PFA calorimeter. Aim at improving BMR from 4% to 3%

Detector	Key parameter	World-class level	CEPC design
PFA based EM calorimeter	EM shower E resolution	~20%/√E	$<3\%/\sqrt{E}$
PFA based Hadron calorimeter	Single hadron E resolution	~50%/√E	\sim 40%/ \sqrt{E}

Earth Neutrino@Tsinghua

CEPC: innovative design & key technologies R&D at the leading position of international future colliders.

Conceptual Innovation

Upgradable Capability

State-ofthe-art Tech.

Green & Cost Saving

Revolutionary Principle

Spillover

- > 100km circular collider
- ➤ Partial/Full double ring
- Switchable energies H/W/Z
- One tunnel for booster/collider and SppC

- **→** High efficiency Klystron
- > SRF cavities
- > Weak field dipole
- > Dual aperture magnets
- > PWFA Injector
- > Iron based HTS Mag
- **►** Innovative PFA Detector

Budgets for R&D and construction, and the timeline

Cost estimation of the CEPC (CDR)

Tier I	Tier II	Amount (100 M CNY)		
	Collider	99.2		
	Booster	39.2		
	Linac and sources	9.1		
Accelerator	Damping ring	0.44		
Accelerator	Common: Cryogenics	10.6		
	Survey & alignment	4		
	Radiation protection	1.7		
Conventional facilities	-	102		
Detectors	-	40		
γ -ray beam lines	-	3		
Project management (1%)	-	3		
Contingency (15%)	-	46		
Total	-	358		

	_												
A													
			-			CEDC	Work Breakdown Structure (WBS) - Accelerator						
opy for	mattin	g from	one loc	ation ar	id appi	y it to a	nother						
evel L	evel 2	Level 3	Level 4	Level 5	Level 6	Level 7	WBS Element Title	Type	Unit	Number	price (10,000.)	Total Price (10,000 Yuan)	Auminum Auminum Auminum Auminum Auminum Radiaton sheking Epoxy, paint, and Water cooling, temperature swith, electric connectors, etc Minding former, casting mould, punching dis skading looking, etc.
Ť							TOTAL (accelerator)					1641673	
2							Accelerator Physics					1000	
2	1						Analytic and simulation studies						10
2	2		- 8				Code development						
2	3						Computing hardware						-0
2	4						Computing software						160
2	5						Publication						
3							Collider (Ch 4) Collider ring					991757	
3	1						Superconducting RF System (Ch 4.3.1)					95200	. 0
3	1	1					Cavity	650 MHz 2-cell niobium	one	240	180		25
3	1	2					Cryomodule	2 K, for 6 cavities	one	40	200	N.	
3	1	3					Input coupler	650 MHz, single window, va	e one	240	40	. 201	, ,
3	1	4					HOM coupler	coaxial, detachable	one	480	15	1/5	
3	1	5					HOM absorber	room temperature	one	80	40	r χ Σ	
3	1	6					Tuner	end lever with piezo	one	240			
3	1	7					Vacuum, valve, cables, tooling, assembly, etc.		one	40		16800	
3	1	8										\circ	
3	1	9					TO A STORY OF THE PARTY.				~(`		
3	2						RF Power Source (Ch 4.3.2)				_ ~ \^^	.00	
3	2	1					Klystron	650MHz/800kW	SET		20	36000	
3	2	2					PSM source	120kV/16A	SET	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	∪ y _∞	42000	
3	2	3					Circulator and dummy load	800kW		. ~~	250	30000	
3	2	4					LLRF			17	25	3000	
3	2	5					Waveguide	800kW	~()	· ×	100	12000	
3	2	6							~(1)~	'			
3	2	7							\sim				
								1	U	1			
3	2	8						٧ ر					
3	2	9					17.00	V• 1	$\overline{}$				
3	3						Magnets (Ch 4.3.3)	<u>~</u> . ∠				304986	
3	3	1					Dipoles	705. T				173192	
3	3	1	1				Dual aperture dipole		one	2384	69	164496	
3	3	- 1	1	1			Coils (main & trim)		m	28.7	0.1	2.87	Aluminus
3	3	1	1	2			Lamination		m	28.7	0.6	17.22	Steel - J2
3	3	-1	1	3			Stainless steel		m	28.7	0.4	11.48	Support and structur
3	3	1	1	4			Lead		m	28.7	0.2	5.74	Radiation shielding
3	3	1	1	5			Other materials		m	28.7	0.1	2.87	Epoxy, paint, etc
3	3	1	1	6			Accessories		set	1	0.72	0.72	Water cooling, temperature swith, electric connectors, etc.
3	3	1	1	7			Toolings		one	1	1.2	1.2	finding former, casting mould, punching die, stacking tooling, et
3	3	1	1	8			Machining & assembly		one	1	15	15	
3	3	1	1	9			Inspection & test		one	1	0.1	0.1	
3	3	1	1	10			Package & delivery		one	1	0.5	0.5	
3	3	1	1	11			Overhead		one	1	1.5	1.5	
3	3	1	1	12			Tax		one	1	7	7	

- Cost estimated with two indpendent methods, agrees at 10% level
- CEPC design relies on well studied, or mature tech. reducing uncertainties on Cost estimation
- Cost estimation for TDR phase is progress: no major change

Outline

Brief introduction to CEPC

Scientific objectives, significance, and strategic value

Key scientific and technological issues

Design of experimental facility and technical requirements

Upgrade capability and added values

Status and maturities of the CEPC technologies

Core team, the host institution and the existing support

Budgets for R&D and construction, and the timeline

Summary

Budgets for R&D and construction

Cost and benefit analysis

- CEPC is priceless in revealing potential discoveries & knowledge. CEPC may provide the **Higgs data** in 2030s, thus brings upon mankind a new era in the science exploration.
- The current CEPC design is optimized. The cost is reduced through innovative design & new tech. development.
- CEPC will host thousands of users and operates for decades. The investment per researcher per year is comparable, or even smaller than that of other facilities & other disciplines.
- CEPC has the upgradable capability and provides **strong boost to the technologies**, is a highland for global talent training & **cooperative innovations**. It could revolutionize multiple key-tech. that has huge potential for application.
- CEPC attracts significant International collaboration, enhance the international communication, contribute to the World Peace.
- The science city of CEPC could strongly promote local economic.

Scientific objective: Higgs field & Challenges to the SM

Primordial fluctuations

Cosmic microwave background

- Hierarchy: From neutrinos to the top mass, masses differs by 13 orders of magnitude
- Naturalness: Fine tuning of the Higgs mass
- Masses of Higgs and top quark: metastable of the vacuum
- Unification?
- Dark matter candidate?
- Not sufficient CP Violation for Matter & Antimatter asymmetry
- Most issues related to Higgs

Earth Neutrino@Tsinghua

CEPC Measurement Precision

Table 2.1: Precision of the main parameters of interests and observables at CEPC, from Ref. [1] and the references therein, where the results of Higgs are estimated with a data sample of 20 ab^{-1} . The HL-LHC projections of 3000 fb^{-1} data [2] are used for comparison

	Higgs		W, Z, and top		
Observable	HL-LHC projections	CEPC precision	Observable	Current precision	CEPC precision
M_H	20 MeV	3 MeV	M_W	9 MeV	0.5 MeV
Γ_H	20%	1.7%	Γ_W	49 MeV	2 MeV
$\sigma(ZH)$	4.2%	0.26%	M_{top}	760 MeV	$\mathcal{O}(10)~\mathrm{MeV}$
$B(H \to bb)$	4.4%	0.14%	M_Z	2.1 MeV	0.1 MeV
$B(H \to cc)$	-	2.0%	Γ_Z	2.3 MeV	0.025 MeV
$B(H \to gg)$	-	0.81%	R_b	3×10^{-3}	2×10^{-4}
$B(H \to WW^*)$	2.8%	0.53%	R_c	1.7×10^{-2}	1×10^{-3}
$B(H\to ZZ^*)$	2.9%	4.2%	R_{μ}	2×10^{-3}	1×10^{-4}
$B(H \to \tau^+ \tau^-)$	2.9%	0.42%	$R_{ au}$	1.7×10^{-2}	1×10^{-4}
$B(H \to \gamma \gamma)$	2.6%	3.0%	A_{μ}	1.5×10^{-2}	3.5×10^{-5}
$B(H \to \mu^+ \mu^-)$	8.2%	6.4%	$A_{ au}$	4.3×10^{-3}	7×10^{-5}
$B(H \to Z\gamma)$	20%	8.5%	A_b	2×10^{-2}	2×10^{-4}
$Bupper(H \to \text{inv.})$	2.5%	0.07%	$N_{ u}$	2.5×10^{-3}	2×10^{-4}

Accelerator	Cost (billion CNY)	Ratio	CEPC R&D	BEPCII /HEPS
Magnets	4.47	27.3%	20.0%	7.0%
Vacuum	3.00	18.3%	10.0%	8.0%
RF power source	1.50	9.1%	5.0%	2.0%
Mechanics	1.24	7.6%	N.A	6.6%
Magnet power supplies	1.14	7.0%	0.5%	6.5%
SCRF	1.16	7.1%	5.1%	2.0%
Cryogenics	1.06	6.5%	3.0%	2.5%
Linac and sources	0.91	5.5%	2.0%	2.5%
Instrumentation	0.87	5.3%	2.3%	3.0%
Control	0.39	2.4%	0.1%	0.5%
Survey and alignment	0.40	2.4%	1.4%	1.0%
Radiation protection	0.17	1.0%	0.1%	0.2%
SC magnets	0.07	0.4%	0.2%	0.1%
Damping ring	0.04	0.2%	N.A.	N.A.
Total			49.7%	41.9%